Rolling shutter absolute pose problem with known vertical direction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00303999" target="_blank" >RIV/68407700:21230/16:00303999 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rolling shutter absolute pose problem with known vertical direction
Popis výsledku v původním jazyce
We present a solution to the rolling shutter (RS) absolute camera pose problem with known vertical direction. Our new solver, R5Pup, is an extension of the general minimal solution R6P, which uses a double linearized RS camera model initialized by the standard perspective P3P. Here, thanks to using known vertical directions, we avoid double linearization and can get the camera absolute pose directly from the RS model without the initialization by a standard P3P. Moreover, we need only five 2D-to-3D matches while R6P needed six such matches. We demonstrate in simulated and real experiments that our new R5Pup is robust, fast and a very practical method for absolute camera pose computation for modern cameras on mobile devices. We compare our R5Pup to the state of the art RS and perspective methods and demonstrate that it outperforms them when vertical direction is known in the range of accuracy available on modern mobile devices. We also demonstrate that when using R5Pup solver in structure from motion (SfM) pipelines, it is better to transform already reconstructed scenes into the standard position, rather than using hard constraints on the verticality of up vectors.
Název v anglickém jazyce
Rolling shutter absolute pose problem with known vertical direction
Popis výsledku anglicky
We present a solution to the rolling shutter (RS) absolute camera pose problem with known vertical direction. Our new solver, R5Pup, is an extension of the general minimal solution R6P, which uses a double linearized RS camera model initialized by the standard perspective P3P. Here, thanks to using known vertical directions, we avoid double linearization and can get the camera absolute pose directly from the RS model without the initialization by a standard P3P. Moreover, we need only five 2D-to-3D matches while R6P needed six such matches. We demonstrate in simulated and real experiments that our new R5Pup is robust, fast and a very practical method for absolute camera pose computation for modern cameras on mobile devices. We compare our R5Pup to the state of the art RS and perspective methods and demonstrate that it outperforms them when vertical direction is known in the range of accuracy available on modern mobile devices. We also demonstrate that when using R5Pup solver in structure from motion (SfM) pipelines, it is better to transform already reconstructed scenes into the standard position, rather than using hard constraints on the verticality of up vectors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2016: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4673-8851-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
9
Strana od-do
3355-3363
Název nakladatele
IEEE Computer Society Press
Místo vydání
Los Alamitos
Místo konání akce
Las Vegas
Datum konání akce
26. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—