Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Absolute Pose from One or Two Scaled and Oriented Features

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F24%3A00380114" target="_blank" >RIV/68407700:21230/24:00380114 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/24:00380114

  • Výsledek na webu

    <a href="https://doi.org/10.1109/CVPR52733.2024.01972" target="_blank" >https://doi.org/10.1109/CVPR52733.2024.01972</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52733.2024.01972" target="_blank" >10.1109/CVPR52733.2024.01972</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Absolute Pose from One or Two Scaled and Oriented Features

  • Popis výsledku v původním jazyce

    Keypoints used for image matching often include an estimate of the feature scale and orientation. While recent work has demonstrated the advantages of using feature scales and orientations for relative pose estimation, relatively little work has considered their use for absolute pose estimation. We introduce minimal solutions for absolute pose from two oriented feature correspondences in the general case, or one scaled and oriented correspondence given a known vertical direction. Nowadays, assuming a known direction is not particularly restrictive as modern consumer devices, such as smartphones or drones, are equipped with Inertial Measurement Units (IMU) that provide the gravity direction by default. Compared to traditional absolute pose methods requiring three point correspondences, our solvers need a smaller minimal sample, reducing the cost and complexity of robust estimation. Evaluations on large-scale and public real datasets demonstrate the advantage of our methods for fast and accurate localization in challenging conditions. Code is available at https://github.com/danini/absolute-pose-from-oriented-and-sealed-features.

  • Název v anglickém jazyce

    Absolute Pose from One or Two Scaled and Oriented Features

  • Popis výsledku anglicky

    Keypoints used for image matching often include an estimate of the feature scale and orientation. While recent work has demonstrated the advantages of using feature scales and orientations for relative pose estimation, relatively little work has considered their use for absolute pose estimation. We introduce minimal solutions for absolute pose from two oriented feature correspondences in the general case, or one scaled and oriented correspondence given a known vertical direction. Nowadays, assuming a known direction is not particularly restrictive as modern consumer devices, such as smartphones or drones, are equipped with Inertial Measurement Units (IMU) that provide the gravity direction by default. Compared to traditional absolute pose methods requiring three point correspondences, our solvers need a smaller minimal sample, reducing the cost and complexity of robust estimation. Evaluations on large-scale and public real datasets demonstrate the advantage of our methods for fast and accurate localization in challenging conditions. Code is available at https://github.com/danini/absolute-pose-from-oriented-and-sealed-features.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM22-23183M" target="_blank" >GM22-23183M: Nová generace algoritmů pro řešení problémů geometrie kamer</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    979-8-3503-5300-6

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Počet stran výsledku

    11

  • Strana od-do

    20870-20880

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    Los Alamitos

  • Místo konání akce

    Seattle

  • Datum konání akce

    16. 6. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001342515504022