P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00372033" target="_blank" >RIV/68407700:21230/23:00372033 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/23:00372033
Výsledek na webu
<a href="https://doi.org/10.1109/ICCV51070.2023.01809" target="_blank" >https://doi.org/10.1109/ICCV51070.2023.01809</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCV51070.2023.01809" target="_blank" >10.1109/ICCV51070.2023.01809</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
Popis výsledku v původním jazyce
Affine correspondences have traditionally been used to improve feature matching over wide baselines. While recent work has successfully used affine correspondences to solve various relative camera pose estimation problems, less attention has been given to their use in absolute pose estimation. We introduce the first general solution to the problem of estimating the pose of a calibrated camera given a single observation of an oriented point and an affine correspondence. The advantage of our approach (P1AC) is that it requires only a single correspondence, in compar ison to the traditional point-based approach (P3P), significantly reducing the combinatorics in robust estimation. P1AC provides a general solution that removes restrictive assumptions made in prior work and is applicable to large-scale image-based localization. We propose a minimal solution to the P1AC problem and evaluate our novel solver on synthetic data, showing its numerical stability and performance under various types of noise. On standard image-based localization benchmarks we show that P1AC achieves more accurate results than the widely used P3P algorithm. Code for our method is available at https: //github.com/jonathanventura/P1AC/
Název v anglickém jazyce
P1AC: Revisiting Absolute Pose From a Single Affine Correspondence
Popis výsledku anglicky
Affine correspondences have traditionally been used to improve feature matching over wide baselines. While recent work has successfully used affine correspondences to solve various relative camera pose estimation problems, less attention has been given to their use in absolute pose estimation. We introduce the first general solution to the problem of estimating the pose of a calibrated camera given a single observation of an oriented point and an affine correspondence. The advantage of our approach (P1AC) is that it requires only a single correspondence, in compar ison to the traditional point-based approach (P3P), significantly reducing the combinatorics in robust estimation. P1AC provides a general solution that removes restrictive assumptions made in prior work and is applicable to large-scale image-based localization. We propose a minimal solution to the P1AC problem and evaluate our novel solver on synthetic data, showing its numerical stability and performance under various types of noise. On standard image-based localization benchmarks we show that P1AC achieves more accurate results than the widely used P3P algorithm. Code for our method is available at https: //github.com/jonathanventura/P1AC/
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICCV2023: Proceedings of the International Conference on Computer Vision
ISBN
979-8-3503-0719-1
ISSN
1550-5499
e-ISSN
2380-7504
Počet stran výsledku
11
Strana od-do
19694-19704
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Paris
Datum konání akce
2. 10. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001169500504030