EXACT ALGORITHMS FOR LINEAR MATRIX INEQUALITIES
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304330" target="_blank" >RIV/68407700:21230/16:00304330 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1137/15M1036543" target="_blank" >http://dx.doi.org/10.1137/15M1036543</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/15M1036543" target="_blank" >10.1137/15M1036543</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
EXACT ALGORITHMS FOR LINEAR MATRIX INEQUALITIES
Popis výsledku v původním jazyce
Let A(x) = A0 +x1A1+xnAn be a linear matrix, or pencil, generated by given symmetric matrices A0;A1;An of size m with rational entries. The set of real vectors x such that the pencil is positive semidefinite is a convex semialgebraic set called spectrahedron, described by a linear matrix inequality. We design an exact algorithm that, up to genericity assumptions on the input matrices, computes an exact algebraic representation of at least one point in the spectrahedron, or decides that it is empty. The algorithm does not assume the existence of an interior point, and the computed point minimizes the rank of the pencil on the spectrahedron. The degree d of the algebraic representation of the point coincides experimentally with the algebraic degree of a generic semide finite program associated to the pencil. We provide explicit bounds for the complexity of our algorithm, proving that the maximum number of arithmetic operations that are performed is essentially quadratic in a multilinear Bezout bound of d. When m (resp., n) is fixed, such a bound, and hence the complexity, is polynomial in n (resp., m). We conclude by providing results of experiments showing practical improvements with respect to state-of-The-Art computer algebra algorithms.
Název v anglickém jazyce
EXACT ALGORITHMS FOR LINEAR MATRIX INEQUALITIES
Popis výsledku anglicky
Let A(x) = A0 +x1A1+xnAn be a linear matrix, or pencil, generated by given symmetric matrices A0;A1;An of size m with rational entries. The set of real vectors x such that the pencil is positive semidefinite is a convex semialgebraic set called spectrahedron, described by a linear matrix inequality. We design an exact algorithm that, up to genericity assumptions on the input matrices, computes an exact algebraic representation of at least one point in the spectrahedron, or decides that it is empty. The algorithm does not assume the existence of an interior point, and the computed point minimizes the rank of the pencil on the spectrahedron. The degree d of the algebraic representation of the point coincides experimentally with the algebraic degree of a generic semide finite program associated to the pencil. We provide explicit bounds for the complexity of our algorithm, proving that the maximum number of arithmetic operations that are performed is essentially quadratic in a multilinear Bezout bound of d. When m (resp., n) is fixed, such a bound, and hence the complexity, is polynomial in n (resp., m). We conclude by providing results of experiments showing practical improvements with respect to state-of-The-Art computer algebra algorithms.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM JOURNAL ON OPTIMIZATION
ISSN
1052-6234
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
2512-2539
Kód UT WoS článku
000391853600021
EID výsledku v databázi Scopus
2-s2.0-85007170438