Exact algorithms for semidefinite programs with degenerate feasible set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F21%3A00348008" target="_blank" >RIV/68407700:21230/21:00348008 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jsc.2020.11.001" target="_blank" >https://doi.org/10.1016/j.jsc.2020.11.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jsc.2020.11.001" target="_blank" >10.1016/j.jsc.2020.11.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exact algorithms for semidefinite programs with degenerate feasible set
Popis výsledku v původním jazyce
Given symmetric matrices A0,A1,...,An of size m with rational entries, the set of real vectors x=(x1,...,xn) such that the matrix A0+x1A1++xnAn has non-negative eigenvalues is called a spectrahedron. Minimization of linear functions over spectrahedra is called semidefinite programming. Such problems appear frequently in control theory and real algebra, especially in the context of nonnegativity certificates for multivariate polynomials based on sums of squares. Numerical software for semidefinite programming are mostly based on interior point methods, assuming non-degeneracy properties such as the existence of an interior point in the spectrahedron. In this paper, we design an exact algorithm based on symbolic homotopy for solving semidefinite programs without assumptions on the feasible set, and we analyze its complexity. Because of the exactness of the output, it cannot compete with numerical routines in practice. However, we prove that solving such problems can be done in polynomial time if either n or m is fixed.
Název v anglickém jazyce
Exact algorithms for semidefinite programs with degenerate feasible set
Popis výsledku anglicky
Given symmetric matrices A0,A1,...,An of size m with rational entries, the set of real vectors x=(x1,...,xn) such that the matrix A0+x1A1++xnAn has non-negative eigenvalues is called a spectrahedron. Minimization of linear functions over spectrahedra is called semidefinite programming. Such problems appear frequently in control theory and real algebra, especially in the context of nonnegativity certificates for multivariate polynomials based on sums of squares. Numerical software for semidefinite programming are mostly based on interior point methods, assuming non-degeneracy properties such as the existence of an interior point in the spectrahedron. In this paper, we design an exact algorithm based on symbolic homotopy for solving semidefinite programs without assumptions on the feasible set, and we analyze its complexity. Because of the exactness of the output, it cannot compete with numerical routines in practice. However, we prove that solving such problems can be done in polynomial time if either n or m is fixed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Computation
ISSN
0747-7171
e-ISSN
1095-855X
Svazek periodika
104
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
942-959
Kód UT WoS článku
000598670000041
EID výsledku v databázi Scopus
2-s2.0-85097046553