Improving Response Time Through Multimodal Integration Pattern Modeling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304615" target="_blank" >RIV/68407700:21230/16:00304615 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ISM.2016.9" target="_blank" >http://dx.doi.org/10.1109/ISM.2016.9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ISM.2016.9" target="_blank" >10.1109/ISM.2016.9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improving Response Time Through Multimodal Integration Pattern Modeling
Popis výsledku v původním jazyce
While researchers have focused primarily on accuracy when addressing multimodal input segmentation, response time (or latency) has been rather overlooked in their work, despite its unquestionable importance. We propose a method of the input segmentation through integration pattern modeling that provides a significant improvement in response time over the state-of-the-art approaches, while maintaining remarkably high accuracy (98–99%). To this end, a new Bayesian Belief Network classification model was designed based on the recent empirical evidence about users’ multimodal integration patterns. The model is employed in a procedure to segment related inputs into multimodal units. Using the introduced procedure the response time can be improved to 0.8 seconds for sequential integrators and even dropped bellow 0.5 s for simultaneous, which represents a relative improvement of 20% and 50%, resp., at the very least. Although demonstrated on a combination of speech and gestures, the suggested approach can be generalized to a broad range of other modality mixtures.
Název v anglickém jazyce
Improving Response Time Through Multimodal Integration Pattern Modeling
Popis výsledku anglicky
While researchers have focused primarily on accuracy when addressing multimodal input segmentation, response time (or latency) has been rather overlooked in their work, despite its unquestionable importance. We propose a method of the input segmentation through integration pattern modeling that provides a significant improvement in response time over the state-of-the-art approaches, while maintaining remarkably high accuracy (98–99%). To this end, a new Bayesian Belief Network classification model was designed based on the recent empirical evidence about users’ multimodal integration patterns. The model is employed in a procedure to segment related inputs into multimodal units. Using the introduced procedure the response time can be improved to 0.8 seconds for sequential integrators and even dropped bellow 0.5 s for simultaneous, which represents a relative improvement of 20% and 50%, resp., at the very least. Although demonstrated on a combination of speech and gestures, the suggested approach can be generalized to a broad range of other modality mixtures.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE International Symposium on Multimedia
ISBN
978-1-5090-4570-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
419-424
Název nakladatele
IEEE Computer Soc.
Místo vydání
Los Alamitos, CA
Místo konání akce
San Jose, California
Datum konání akce
11. 12. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—