Design of Neuromorphic Cognitive Module based on Hierarchical Temporal Memory and Demonstrated on Anomaly Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305558" target="_blank" >RIV/68407700:21230/16:00305558 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1877050916316866" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1877050916316866</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.procs.2016.07.430" target="_blank" >10.1016/j.procs.2016.07.430</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of Neuromorphic Cognitive Module based on Hierarchical Temporal Memory and Demonstrated on Anomaly Detection
Popis výsledku v původním jazyce
Our presented idea is to integrate artificial neural network (probably of BICA type) with a real biological network (ideally in the future with the human brain) in order to extend or enhance cognitive- and sensory- capabilities (e.g. by associating existing and artificial sensory inputs). We propose to design such neuro-module using Hierarchical Temporal Memory (HTM) which is a biologically-inspired model of the mammalian neocortex. A complex task of contextual anomaly detection was chosen as our case-study, where we evaluate capabilities of a HTM module on a specifically designed synthetic dataset and propose improvements to the anomaly model. HTM is framed within other common AI/ML approaches and we conclude that HTM is a plausible and useful model for designing a direct brain-extension module and draft a design of a neuromorphic interface for processing asynchronous inputs. Outcome of this study is the practical evaluation of HTM's capabilities on the designed synthetic anomaly dataset, a review of problems of the HTM theory and the current implementation, extended with suggested interesting research direction for the future.
Název v anglickém jazyce
Design of Neuromorphic Cognitive Module based on Hierarchical Temporal Memory and Demonstrated on Anomaly Detection
Popis výsledku anglicky
Our presented idea is to integrate artificial neural network (probably of BICA type) with a real biological network (ideally in the future with the human brain) in order to extend or enhance cognitive- and sensory- capabilities (e.g. by associating existing and artificial sensory inputs). We propose to design such neuro-module using Hierarchical Temporal Memory (HTM) which is a biologically-inspired model of the mammalian neocortex. A complex task of contextual anomaly detection was chosen as our case-study, where we evaluate capabilities of a HTM module on a specifically designed synthetic dataset and propose improvements to the anomaly model. HTM is framed within other common AI/ML approaches and we conclude that HTM is a plausible and useful model for designing a direct brain-extension module and draft a design of a neuromorphic interface for processing asynchronous inputs. Outcome of this study is the practical evaluation of HTM's capabilities on the designed synthetic anomaly dataset, a review of problems of the HTM theory and the current implementation, extended with suggested interesting research direction for the future.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Procedia Computer Science
ISBN
—
ISSN
1877-0509
e-ISSN
—
Počet stran výsledku
7
Strana od-do
232-238
Název nakladatele
Elsevier B.V.
Místo vydání
New York
Místo konání akce
New York City, NY
Datum konání akce
16. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000391723200033