On monotonicity of takagi-sugeno fuzzy systems with ellipsoidal regions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00307108" target="_blank" >RIV/68407700:21230/16:00307108 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2540064" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2016.2540064</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2540064" target="_blank" >10.1109/TFUZZ.2016.2540064</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On monotonicity of takagi-sugeno fuzzy systems with ellipsoidal regions
Popis výsledku v původním jazyce
This paper presents sufficient conditions on monotonicity of a Takagi-Sugeno (T-S) fuzzy system with linear submodels in the consequents of the rules where the input space is considered to be partitioned to ellipsoidal regions. Such regions commonly arise in practice if clustering algorithms are used to identify a fuzzy model from measured data. By the monotonicity, it is meant that the partial derivatives of the output of the mapping represented by the fuzzy model with respect to all inputs are nonnegative on a given universe of discourse. The conditions are given in the form of linear matrix inequalities with respect to the parameters of the submodels that may be useful in solving associated optimization problems via efficient semidefinite programming techniques. The proposed conditions reduce conservatism of the existing ones from two reasons. First, the conservatism is introduced only once, since the conditions are not separated between antecedent and consequent parts of fuzzy rules. Second, the domain of interest where monotonicity is enforced may be restricted. The proposed algorithm is illustrated on least-squares approximation of a multivariate function by a monotonic T-S fuzzy system.
Název v anglickém jazyce
On monotonicity of takagi-sugeno fuzzy systems with ellipsoidal regions
Popis výsledku anglicky
This paper presents sufficient conditions on monotonicity of a Takagi-Sugeno (T-S) fuzzy system with linear submodels in the consequents of the rules where the input space is considered to be partitioned to ellipsoidal regions. Such regions commonly arise in practice if clustering algorithms are used to identify a fuzzy model from measured data. By the monotonicity, it is meant that the partial derivatives of the output of the mapping represented by the fuzzy model with respect to all inputs are nonnegative on a given universe of discourse. The conditions are given in the form of linear matrix inequalities with respect to the parameters of the submodels that may be useful in solving associated optimization problems via efficient semidefinite programming techniques. The proposed conditions reduce conservatism of the existing ones from two reasons. First, the conservatism is introduced only once, since the conditions are not separated between antecedent and consequent parts of fuzzy rules. Second, the domain of interest where monotonicity is enforced may be restricted. The proposed algorithm is illustrated on least-squares approximation of a multivariate function by a monotonic T-S fuzzy system.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-21961S" target="_blank" >GA16-21961S: Mechatronické struktury se silně distribuovanými aktuátory a senzory</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
6
Strana od-do
1673-1678
Kód UT WoS článku
000391718300002
EID výsledku v databázi Scopus
2-s2.0-85008430164