Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algorithms for Solving Optimization Problems Arsing from Deep Neural Net Models: Smooth Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00309135" target="_blank" >RIV/68407700:21230/16:00309135 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algorithms for Solving Optimization Problems Arsing from Deep Neural Net Models: Smooth Problems

  • Popis výsledku v původním jazyce

    Machine Learning models incorporating multiple layered learning networks have been seen to provide e_ective models for various classi_cation problems. The resulting optimization problem to solve for the optimal vector minimizing the empirical risk is, however, highly nonlinear. This presents a challenge to application and development of appropriate optimization algorithms for solving the problem. In this paper, we summarize the primary challenges involved and present the case for a Newton-based method incorporating directions of negative curvature, including promising numerical results on data arising from security anomally deetection.

  • Název v anglickém jazyce

    Algorithms for Solving Optimization Problems Arsing from Deep Neural Net Models: Smooth Problems

  • Popis výsledku anglicky

    Machine Learning models incorporating multiple layered learning networks have been seen to provide e_ective models for various classi_cation problems. The resulting optimization problem to solve for the optimal vector minimizing the empirical risk is, however, highly nonlinear. This presents a challenge to application and development of appropriate optimization algorithms for solving the problem. In this paper, we summarize the primary challenges involved and present the case for a Newton-based method incorporating directions of negative curvature, including promising numerical results on data arising from security anomally deetection.

Klasifikace

  • Druh

    V<sub>souhrn</sub> - Souhrnná výzkumná zpráva

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Počet stran výsledku

    5

  • Místo vydání

    Praha

  • Název nakladatele resp. objednatele

    CISCO SYSTEMS (Czech Republic) s.r.o.

  • Verze