Semi-automatic Ontology Matching for Automotive Industry Ford Laboratory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00309942" target="_blank" >RIV/68407700:21230/16:00309942 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/16:00309942
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-automatic Ontology Matching for Automotive Industry Ford Laboratory
Popis výsledku v původním jazyce
All manufacturing companies need to be able to closely monitor the processes, labor, tooling, parts and throughput on the assembly plant oor. This is often complicated because of the large number of plant oor applications that operate using different hardware and software tools. In many cases there are a large number of devices that need to be monitored and from which critical data must be extracted and analyzed. This situation calls for the use of an architecture that can support data from heterogeneous sources and support the analysis of data and communication with these devices. Another factor to consider are the significant differences between the hardware/software at different manufacturing facilities even though they may be building the same product. This can be due to a variety of reasons including availability of tooling at different locations around the world, local differences and the need to support different versions of hardware and software at many plants.
Název v anglickém jazyce
Semi-automatic Ontology Matching for Automotive Industry Ford Laboratory
Popis výsledku anglicky
All manufacturing companies need to be able to closely monitor the processes, labor, tooling, parts and throughput on the assembly plant oor. This is often complicated because of the large number of plant oor applications that operate using different hardware and software tools. In many cases there are a large number of devices that need to be monitored and from which critical data must be extracted and analyzed. This situation calls for the use of an architecture that can support data from heterogeneous sources and support the analysis of data and communication with these devices. Another factor to consider are the significant differences between the hardware/software at different manufacturing facilities even though they may be building the same product. This can be due to a variety of reasons including availability of tooling at different locations around the world, local differences and the need to support different versions of hardware and software at many plants.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.