Semi-automatic Ontology Matching Approach for Integration of Various Data Models in Automotive
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00321157" target="_blank" >RIV/68407700:21730/17:00321157 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-64635-0_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-64635-0_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-64635-0_5" target="_blank" >10.1007/978-3-319-64635-0_5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-automatic Ontology Matching Approach for Integration of Various Data Models in Automotive
Popis výsledku v původním jazyce
All manufacturing companies need to be able to closely monitor the processes, labor, tooling, parts and throughput on the assembly plant floor. This might be a challenging task because of a large number of plant floor applications that operate using different hardware and software tools. In many cases, there are a large number of devices that need to be monitored and from which critical data must be extracted and analyzed. This situation calls for the use of an architecture that can support data from heterogeneous sources and support the analysis of data and communication with these devices. Ontologies can be developed to facilitate a proper understanding of the problem domain, and subsequently, knowledge from external sources can be shared through linked open data or directly integrated (mapped) using an ontology matching approach. In this paper, we demonstrate how ontological data description may facilitate interoperability between a company data model and new data sources as well as an update of stored data via ontology matching. The MAPSOM system (system for semi-automatic ontology matching) is introduced and described in this paper, and subsequently, an example of new data model integration is demonstrated using the MAPSOM system.
Název v anglickém jazyce
Semi-automatic Ontology Matching Approach for Integration of Various Data Models in Automotive
Popis výsledku anglicky
All manufacturing companies need to be able to closely monitor the processes, labor, tooling, parts and throughput on the assembly plant floor. This might be a challenging task because of a large number of plant floor applications that operate using different hardware and software tools. In many cases, there are a large number of devices that need to be monitored and from which critical data must be extracted and analyzed. This situation calls for the use of an architecture that can support data from heterogeneous sources and support the analysis of data and communication with these devices. Ontologies can be developed to facilitate a proper understanding of the problem domain, and subsequently, knowledge from external sources can be shared through linked open data or directly integrated (mapped) using an ontology matching approach. In this paper, we demonstrate how ontological data description may facilitate interoperability between a company data model and new data sources as well as an update of stored data via ontology matching. The MAPSOM system (system for semi-automatic ontology matching) is introduced and described in this paper, and subsequently, an example of new data model integration is demonstrated using the MAPSOM system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Industrial Applications of Holonic and Multi-Agent Systems
ISBN
978-3-319-64634-3
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
53-65
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Lyon
Datum konání akce
28. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000452464200005