Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Energy Optimization of Robotic Cells

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00303374" target="_blank" >RIV/68407700:21230/17:00303374 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21730/17:00303374

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/TII.2016.2626472" target="_blank" >http://dx.doi.org/10.1109/TII.2016.2626472</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TII.2016.2626472" target="_blank" >10.1109/TII.2016.2626472</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Energy Optimization of Robotic Cells

  • Popis výsledku v původním jazyce

    This study focuses on the energy optimization of industrial robotic cells, which is essential for sustainable production in the long term. A holistic approach that considers a robotic cell as a whole toward minimizing energy consumption is proposed. The mathematical model, which takes into account various robot speeds, positions, power-saving modes, and alternative orders of operations, can be transformed into a mixed-integer linear programming formulation that is, however, suitable only for small instances. To optimize complex robotic cells, a hybrid heuristic accelerated by using multi-core processors and the Gurobi simplex method for piecewise linear convex functions is implemented. The experimental results showed that the heuristic solved 93% of instances with a solution quality close to a proven lower bound. Moreover, compared with the existing works, which typically address problems with 3 to 4 robots, this study solved real-size problem instances with up to 12 robots and considered more optimization aspects. The proposed algorithms were also applied on an existing robotic cell in ˇSkoda Auto. The outcomes, based on simulations and measurements, indicate that, compared with the previous state (at maximal robot speeds and without deeper power-saving modes), the energy consumption can be reduced by about 20% merely by optimizing the robot speeds and applying power-saving modes. All the software and generated data sets used in this research are publicly available.

  • Název v anglickém jazyce

    Energy Optimization of Robotic Cells

  • Popis výsledku anglicky

    This study focuses on the energy optimization of industrial robotic cells, which is essential for sustainable production in the long term. A holistic approach that considers a robotic cell as a whole toward minimizing energy consumption is proposed. The mathematical model, which takes into account various robot speeds, positions, power-saving modes, and alternative orders of operations, can be transformed into a mixed-integer linear programming formulation that is, however, suitable only for small instances. To optimize complex robotic cells, a hybrid heuristic accelerated by using multi-core processors and the Gurobi simplex method for piecewise linear convex functions is implemented. The experimental results showed that the heuristic solved 93% of instances with a solution quality close to a proven lower bound. Moreover, compared with the existing works, which typically address problems with 3 to 4 robots, this study solved real-size problem instances with up to 12 robots and considered more optimization aspects. The proposed algorithms were also applied on an existing robotic cell in ˇSkoda Auto. The outcomes, based on simulations and measurements, indicate that, compared with the previous state (at maximal robot speeds and without deeper power-saving modes), the energy consumption can be reduced by about 20% merely by optimizing the robot speeds and applying power-saving modes. All the software and generated data sets used in this research are publicly available.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-23509S" target="_blank" >GA16-23509S: Flexibilní rozvrhovací a optimalizační algoritmy pro distribuované systémy reálného času</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

  • ISSN

    1551-3203

  • e-ISSN

    1941-0050

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    92-102

  • Kód UT WoS článku

    000395874400010

  • EID výsledku v databázi Scopus

    2-s2.0-85013428317