A stabilized SQP Method: Global Convergence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00307245" target="_blank" >RIV/68407700:21230/17:00307245 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/imajna/article-abstract/37/1/407/2669936/A-stabilized-SQP-method-global-convergence" target="_blank" >https://academic.oup.com/imajna/article-abstract/37/1/407/2669936/A-stabilized-SQP-method-global-convergence</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/imanum/drw004" target="_blank" >10.1093/imanum/drw004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A stabilized SQP Method: Global Convergence
Popis výsledku v původním jazyce
Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence even when the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal–dual augmented Lagrangian merit function. The proposed method incorporates two novel features. First, a flexible line search is used based on a direction formed from an approximate solution of a strictly convex quadratic programming (QP) subproblem and, when one exists, a direction of negative curvature for the primal–dual merit function. Second, when certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. We also establish two desirable convergence results. (i) It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as an SQP method with an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this situation, if all termination conditions are removed, then the limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification. (ii) The global convergence analysis concerns a specific algorithm that estimates the least curvature of the merit function at each step. If negative curvature directions are omitted, the analysis still applies and establishes convergence to either first-order solutions or infeasible stationary points.
Název v anglickém jazyce
A stabilized SQP Method: Global Convergence
Popis výsledku anglicky
Stabilized sequential quadratic programming (SQP) methods for nonlinear optimization are designed to provide a sequence of iterates with fast local convergence even when the active-constraint gradients are linearly dependent. This paper concerns the global convergence properties of a stabilized SQP method with a primal–dual augmented Lagrangian merit function. The proposed method incorporates two novel features. First, a flexible line search is used based on a direction formed from an approximate solution of a strictly convex quadratic programming (QP) subproblem and, when one exists, a direction of negative curvature for the primal–dual merit function. Second, when certain conditions hold, an approximate QP solution is computed by solving a single linear system defined in terms of an estimate of the optimal active set. We also establish two desirable convergence results. (i) It is shown that with an appropriate choice of termination condition, the method terminates in a finite number of iterations without the assumption of a constraint qualification. The method may be interpreted as an SQP method with an augmented Lagrangian safeguarding strategy. This safeguarding becomes relevant only when the iterates are converging to an infeasible stationary point of the norm of the constraint violations. Otherwise, the method terminates with a point that approximately satisfies certain second-order necessary conditions for optimality. In this situation, if all termination conditions are removed, then the limit points either satisfy the same second-order necessary conditions exactly or fail to satisfy a weak second-order constraint qualification. (ii) The global convergence analysis concerns a specific algorithm that estimates the least curvature of the merit function at each step. If negative curvature directions are omitted, the analysis still applies and establishes convergence to either first-order solutions or infeasible stationary points.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0034" target="_blank" >EE2.3.30.0034: Podpora zkvalitnění týmů výzkumu a vývoje a rozvoj intersektorální mobility na ČVUT v Praze</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IMA Journal of Numerical Analysis (IMAJNA)
ISSN
0272-4979
e-ISSN
1464-3642
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
37
Strana od-do
407-443
Kód UT WoS článku
000397147700014
EID výsledku v databázi Scopus
2-s2.0-85017019334