A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00341371" target="_blank" >RIV/68407700:21230/20:00341371 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/19M1247425" target="_blank" >https://doi.org/10.1137/19M1247425</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/19M1247425" target="_blank" >10.1137/19M1247425</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization
Popis výsledku v původním jazyce
In nonlinearly constrained optimization, penalty methods provide an effective strategy for handling equality constraints, while barrier methods provide an effective approach for the treatment of inequality constraints. A new algorithm for nonlinear optimization is proposed based on minimizing a shifted primal-dual penalty-barrier function. Certain global convergence properties are established. In particular, it is shown that a limit point of the sequence of iterates may always be found that is either an infeasible stationary point or a complementary approximate Karush--Kuhn--Tucker point; i.e., it satisfies reasonable stopping criteria and is a Karush--Kuhn--Tucker point under a regularity condition that is the weakest constraint qualification associated with sequential optimality conditions. It is also shown that under suitable additional assumptions, the method is equivalent to a shifted variant of the primal-dual path-following method in the neighborhood of a solution. Numerical examples are provided that illustrate the performance of the method compared to a widely used conventional interior-point method.
Název v anglickém jazyce
A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization
Popis výsledku anglicky
In nonlinearly constrained optimization, penalty methods provide an effective strategy for handling equality constraints, while barrier methods provide an effective approach for the treatment of inequality constraints. A new algorithm for nonlinear optimization is proposed based on minimizing a shifted primal-dual penalty-barrier function. Certain global convergence properties are established. In particular, it is shown that a limit point of the sequence of iterates may always be found that is either an infeasible stationary point or a complementary approximate Karush--Kuhn--Tucker point; i.e., it satisfies reasonable stopping criteria and is a Karush--Kuhn--Tucker point under a regularity condition that is the weakest constraint qualification associated with sequential optimality conditions. It is also shown that under suitable additional assumptions, the method is equivalent to a shifted variant of the primal-dual path-following method in the neighborhood of a solution. Numerical examples are provided that illustrate the performance of the method compared to a widely used conventional interior-point method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Optimization
ISSN
1052-6234
e-ISSN
1095-7189
Svazek periodika
30
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
1067-1093
Kód UT WoS článku
000547000900002
EID výsledku v databázi Scopus
2-s2.0-85085247890