Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312200" target="_blank" >RIV/68407700:21230/17:00312200 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.105</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2017.105" target="_blank" >10.1109/CVPR.2017.105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations
Popis výsledku v původním jazyce
Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.
Název v anglickém jazyce
Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations
Popis výsledku anglicky
Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1303" target="_blank" >LL1303: Vyhledávání vizuálních kategorií ve velkém množství obrázků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-0457-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
10
Strana od-do
926-935
Název nakladatele
IEEE Computer Society Press
Místo vydání
—
Místo konání akce
Honolulu
Datum konání akce
21. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000418371400098