Asymmetric Feature Maps with Application to Sketch Based Retrieval
Popis výsledku
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
DOI - Digital Object Identifier
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Asymmetric Feature Maps with Application to Sketch Based Retrieval
Popis výsledku v původním jazyce
We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.
Název v anglickém jazyce
Asymmetric Feature Maps with Application to Sketch Based Retrieval
Popis výsledku anglicky
We propose a novel concept of asymmetric feature maps (AFM), which allows to evaluate multiple kernels between a query and database entries without increasing the memory requirements. To demonstrate the advantages of the AFM method, we derive a short vector image representation that, due to asymmetric feature maps, supports efficient scale and translation invariant sketch-based image retrieval. Unlike most of the short-code based retrieval systems, the proposed method provides the query localization in the retrieved image. The efficiency of the search is boosted by approximating a 2D translation search via trigonometric polynomial of scores by 1D projections. The projections are a special case of AFM. An order of magnitude speed-up is achieved compared to traditional trigonometric polynomials. The results are boosted by an image-based average query expansion, exceeding significantly the state of the art on standard benchmarks.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
LL1303: Vyhledávání vizuálních kategorií ve velkém množství obrázků
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-0457-1
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
9
Strana od-do
6185-6193
Název nakladatele
IEEE Computer Society Press
Místo vydání
—
Místo konání akce
Honolulu
Datum konání akce
21. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000418371406030
Základní informace
Druh výsledku
D - Stať ve sborníku
OECD FORD
Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Rok uplatnění
2017