Feature subset selection and classification of intracardiac electrograms during atrial fibrillation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312281" target="_blank" >RIV/68407700:21230/17:00312281 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/17:00312281
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S1746809417301088" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1746809417301088</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.bspc.2017.06.005" target="_blank" >10.1016/j.bspc.2017.06.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature subset selection and classification of intracardiac electrograms during atrial fibrillation
Popis výsledku v původním jazyce
Several approaches have been adopted for the identification of arrhythmogenic sources maintaining atrial fibrillation (AF). In this paper, we propose a classifier that discriminates between four classes of atrial electrogram (EGM). We delved into the relation between levels of fractionation in EGM signals and the fibrillation substrates in simulated episodes of chronic AF. Several feature extraction methods were used to calculate 92 features from 429 real EGM records acquired during radiofrequency ablation of chronic AF. We selected the optimal subset of features by using a genetic algorithm, followed by K-nearest neighbors (K-NN) classification into four levels of fractionation. Sensitivity of 0.90 and specificity of 0.97 were achieved. Subsequently, the results of the classification were extrapolated to signals of a 3D human atria model and a 2D model of atrial tissue. The 3D model simulated an episode of AF maintained by a rotor in the posterior wall of the left atrium and the 2D model simulated an AF episode with one stable rotor. We used the K-NN classifier trained on a given set of real EGM signals to detect a specific class of signals presenting the highest level of fractionation located near the rotor's vortex. This method needs to be tested on real clinical data to provide evidence that it can support ablation therapy procedures.
Název v anglickém jazyce
Feature subset selection and classification of intracardiac electrograms during atrial fibrillation
Popis výsledku anglicky
Several approaches have been adopted for the identification of arrhythmogenic sources maintaining atrial fibrillation (AF). In this paper, we propose a classifier that discriminates between four classes of atrial electrogram (EGM). We delved into the relation between levels of fractionation in EGM signals and the fibrillation substrates in simulated episodes of chronic AF. Several feature extraction methods were used to calculate 92 features from 429 real EGM records acquired during radiofrequency ablation of chronic AF. We selected the optimal subset of features by using a genetic algorithm, followed by K-nearest neighbors (K-NN) classification into four levels of fractionation. Sensitivity of 0.90 and specificity of 0.97 were achieved. Subsequently, the results of the classification were extrapolated to signals of a 3D human atria model and a 2D model of atrial tissue. The 3D model simulated an episode of AF maintained by a rotor in the posterior wall of the left atrium and the 2D model simulated an AF episode with one stable rotor. We used the K-NN classifier trained on a given set of real EGM signals to detect a specific class of signals presenting the highest level of fractionation located near the rotor's vortex. This method needs to be tested on real clinical data to provide evidence that it can support ablation therapy procedures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP103%2F11%2FP106" target="_blank" >GPP103/11/P106: Integrace digitálního zpracování obrazu a metod umělé inteligence pro hodnocení komplexity intrakardiálních signálů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomedical Signal Processing and Control
ISSN
1746-8094
e-ISSN
1746-8108
Svazek periodika
38
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
182-190
Kód UT WoS článku
000409290400020
EID výsledku v databázi Scopus
2-s2.0-85021174952