On Close Enough Orienteering Problem with Dubins Vehicle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312672" target="_blank" >RIV/68407700:21230/17:00312672 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/IROS.2017.8206453" target="_blank" >http://dx.doi.org/10.1109/IROS.2017.8206453</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IROS.2017.8206453" target="_blank" >10.1109/IROS.2017.8206453</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Close Enough Orienteering Problem with Dubins Vehicle
Popis výsledku v původním jazyce
In this paper, we address a generalization of the Orienteering Problem (OP) for curvature-constrained vehicles and to problems where it is allowed to collect a reward associated to each target location within a specified distance from the target. The addressed problem combines challenges of the combinatorial optimization of the OP (to select the most rewarding targets and find the optimal sequence to visit them) with the continuous optimization related to the determination of the waypoint locations and suitable headings at the waypoints for the considered Dubins vehicle such that the curvature-constrained path does not exceed the given travel budget and the sum of the collected rewards is maximized. The proposed generalization is called the Close Enough Dubins Orienteering Problem (CEDOP) and novel unsupervised learning approach is proposed to address computational requirements of this challenging planning problem. Based on the presented results, the proposed approach is feasible and provides a bit worse solution of CEDOP than the existing combinatorial approach but with significantly lower computational requirements.
Název v anglickém jazyce
On Close Enough Orienteering Problem with Dubins Vehicle
Popis výsledku anglicky
In this paper, we address a generalization of the Orienteering Problem (OP) for curvature-constrained vehicles and to problems where it is allowed to collect a reward associated to each target location within a specified distance from the target. The addressed problem combines challenges of the combinatorial optimization of the OP (to select the most rewarding targets and find the optimal sequence to visit them) with the continuous optimization related to the determination of the waypoint locations and suitable headings at the waypoints for the considered Dubins vehicle such that the curvature-constrained path does not exceed the given travel budget and the sum of the collected rewards is maximized. The proposed generalization is called the Close Enough Dubins Orienteering Problem (CEDOP) and novel unsupervised learning approach is proposed to address computational requirements of this challenging planning problem. Based on the presented results, the proposed approach is feasible and provides a bit worse solution of CEDOP than the existing combinatorial approach but with significantly lower computational requirements.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISBN
978-1-5386-2682-5
ISSN
2153-0858
e-ISSN
—
Počet stran výsledku
7
Strana od-do
5646-5652
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Vancouver
Datum konání akce
24. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426978205047