Data Collection Planning with Non-zero Sensing Distance for a Budget and Curvature Constrained Unmanned Aerial Vehicle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00328623" target="_blank" >RIV/68407700:21230/19:00328623 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10514-019-09844-5" target="_blank" >https://doi.org/10.1007/s10514-019-09844-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10514-019-09844-5" target="_blank" >10.1007/s10514-019-09844-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Collection Planning with Non-zero Sensing Distance for a Budget and Curvature Constrained Unmanned Aerial Vehicle
Popis výsledku v původním jazyce
Data collection missions are one of the many effective use cases of Unmanned Aerial Vehicles (UAVs), where the UAV is required to visit a predefined set of target locations to retrieve data. However, the flight time of a real UAV is time constrained, and therefore only a limited number of target locations can typically be visited within the mission. In this paper, we address the data collection planning problem called the Dubins Orienteering Problem with Neighborhoods (DOPN), which sets out to determine the sequence of visits to the most rewarding subset of target locations, each with an associated reward, within a given travel budget. The objective of the DOPN is thus to maximize the sum of the rewards collected from the visited target locations using a budget constrained path between predefined starting and ending locations. The variant of the Orienteering Problem (OP) addressed here uses curvature-constrained Dubins vehicle model for planning the data collection missions for UAV. Moreover, in the DOPN, it is also assumed that the data, and thus the reward, may be collected from a close neighborhood sensing distance around the target locations, e.g., taking a snapshot by an onboard camera with a wide field of view, or using a sensor with a long range. We propose a novel approach based on the Variable Neighborhood Search (VNS) metaheuristic for the DOPN, in which combinatorial optimization of the sequence for visiting the target locations is simultaneously addressed with continuous optimization for finding Dubins vehicle waypoints inside the neighborhoods of the visited targets. The proposed VNS-based DOPN algorithm is evaluated in numerous benchmark instances, and the results show that it significantly outperforms the existing methods in both solution quality and computational time. The practical deployability of the proposed approach is experimentally verified in a data collection scenario with a real hexarotor UAV.
Název v anglickém jazyce
Data Collection Planning with Non-zero Sensing Distance for a Budget and Curvature Constrained Unmanned Aerial Vehicle
Popis výsledku anglicky
Data collection missions are one of the many effective use cases of Unmanned Aerial Vehicles (UAVs), where the UAV is required to visit a predefined set of target locations to retrieve data. However, the flight time of a real UAV is time constrained, and therefore only a limited number of target locations can typically be visited within the mission. In this paper, we address the data collection planning problem called the Dubins Orienteering Problem with Neighborhoods (DOPN), which sets out to determine the sequence of visits to the most rewarding subset of target locations, each with an associated reward, within a given travel budget. The objective of the DOPN is thus to maximize the sum of the rewards collected from the visited target locations using a budget constrained path between predefined starting and ending locations. The variant of the Orienteering Problem (OP) addressed here uses curvature-constrained Dubins vehicle model for planning the data collection missions for UAV. Moreover, in the DOPN, it is also assumed that the data, and thus the reward, may be collected from a close neighborhood sensing distance around the target locations, e.g., taking a snapshot by an onboard camera with a wide field of view, or using a sensor with a long range. We propose a novel approach based on the Variable Neighborhood Search (VNS) metaheuristic for the DOPN, in which combinatorial optimization of the sequence for visiting the target locations is simultaneously addressed with continuous optimization for finding Dubins vehicle waypoints inside the neighborhoods of the visited targets. The proposed VNS-based DOPN algorithm is evaluated in numerous benchmark instances, and the results show that it significantly outperforms the existing methods in both solution quality and computational time. The practical deployability of the proposed approach is experimentally verified in a data collection scenario with a real hexarotor UAV.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Autonomous Robots
ISSN
0929-5593
e-ISSN
1573-7527
Svazek periodika
43
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1937-1956
Kód UT WoS článku
000487951900002
EID výsledku v databázi Scopus
2-s2.0-85062029285