Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The exact solution of the Schrodinger equation with a polynomially spatially varying mass

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312865" target="_blank" >RIV/68407700:21230/17:00312865 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://aip.scitation.org/doi/full/10.1063/1.4993194" target="_blank" >http://aip.scitation.org/doi/full/10.1063/1.4993194</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.4993194" target="_blank" >10.1063/1.4993194</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The exact solution of the Schrodinger equation with a polynomially spatially varying mass

  • Popis výsledku v původním jazyce

    The Schrodinger equation with a position-dependent mass (SEPDM) is employed in many areas of quantum physics. Exact solutions for the SEPDM lie at the center of interest of the professional public because it helps us to understand the behavior of quantum particles in the cases in which their mass varies spatially. For this purpose, we used the mass function represented by a quartic polynomial and a quadratic potential function, which extends the current class of exact solutions of the SEPDM. The exact analytical solution of the problem is expressed as a linear combination of local Heun functions. Heun's equation contains many parameters, resulting in its general nature. We studied how limit changes in some of these parameters will affect the solution of the SEPDM. The obtained solutions are particularly suitable for the transfer matrix method and solutions of scattering problems; this is demonstrated by the calculation of bound states.

  • Název v anglickém jazyce

    The exact solution of the Schrodinger equation with a polynomially spatially varying mass

  • Popis výsledku anglicky

    The Schrodinger equation with a position-dependent mass (SEPDM) is employed in many areas of quantum physics. Exact solutions for the SEPDM lie at the center of interest of the professional public because it helps us to understand the behavior of quantum particles in the cases in which their mass varies spatially. For this purpose, we used the mass function represented by a quartic polynomial and a quadratic potential function, which extends the current class of exact solutions of the SEPDM. The exact analytical solution of the problem is expressed as a linear combination of local Heun functions. Heun's equation contains many parameters, resulting in its general nature. We studied how limit changes in some of these parameters will affect the solution of the SEPDM. The obtained solutions are particularly suitable for the transfer matrix method and solutions of scattering problems; this is demonstrated by the calculation of bound states.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10303 - Particles and field physics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-23079S" target="_blank" >GA15-23079S: Šíření akustických vln nelokálními disperzními zónami</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

    1089-7658

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

  • Kód UT WoS článku

    000406764000022

  • EID výsledku v databázi Scopus

    2-s2.0-85024493603