Description of waves in inhomogeneous domains using Heun's equation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00321170" target="_blank" >RIV/68407700:21230/18:00321170 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/abs/10.1080/17455030.2017.1338788?journalCode=twrm20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/17455030.2017.1338788?journalCode=twrm20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17455030.2017.1338788" target="_blank" >10.1080/17455030.2017.1338788</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Description of waves in inhomogeneous domains using Heun's equation
Popis výsledku v původním jazyce
There are a number of model equations describing electromagnetic, acoustic or quantum waves in inhomogeneous domains and some of them are of the same type from the mathematical point of view. This isomorphism enables us to use a unified approach to solving the corresponding equations. In this paper, the inhomogeneity is represented by a trigonometric spatial distribution of a parameter determining the properties of an inhomogeneous domain. From the point of view of modeling, this trigonometric parameter function can be smoothly connected to neighboring constant-parameter regions. For this type of distribution, exact local solutions of the model equations are represented by the local Heun functions. As the interval for which the solution is sought includes two regular singular points. For this reason, a method is proposed which resolves this problem only based on the local Heun functions. Further, the transfer matrix for the considered inhomogeneous domain is determined by means of the proposed method. As an example of the applicability of the presented solutions the transmission coefficient is calculated for the locally periodic structure which is given by an array of asymmetric barriers.
Název v anglickém jazyce
Description of waves in inhomogeneous domains using Heun's equation
Popis výsledku anglicky
There are a number of model equations describing electromagnetic, acoustic or quantum waves in inhomogeneous domains and some of them are of the same type from the mathematical point of view. This isomorphism enables us to use a unified approach to solving the corresponding equations. In this paper, the inhomogeneity is represented by a trigonometric spatial distribution of a parameter determining the properties of an inhomogeneous domain. From the point of view of modeling, this trigonometric parameter function can be smoothly connected to neighboring constant-parameter regions. For this type of distribution, exact local solutions of the model equations are represented by the local Heun functions. As the interval for which the solution is sought includes two regular singular points. For this reason, a method is proposed which resolves this problem only based on the local Heun functions. Further, the transfer matrix for the considered inhomogeneous domain is determined by means of the proposed method. As an example of the applicability of the presented solutions the transmission coefficient is calculated for the locally periodic structure which is given by an array of asymmetric barriers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23079S" target="_blank" >GA15-23079S: Šíření akustických vln nelokálními disperzními zónami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Waves in Random and Complex Media
ISSN
1745-5030
e-ISSN
1745-5049
Svazek periodika
28
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
236-252
Kód UT WoS článku
000428206000003
EID výsledku v databázi Scopus
2-s2.0-85020723776