Equivalent force modeling of macro fiber composite actuators integrated into nonhomogeneous composite plates for dynamic applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312868" target="_blank" >RIV/68407700:21230/17:00312868 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1361-665X/aa7bd0" target="_blank" >http://dx.doi.org/10.1088/1361-665X/aa7bd0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-665X/aa7bd0" target="_blank" >10.1088/1361-665X/aa7bd0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equivalent force modeling of macro fiber composite actuators integrated into nonhomogeneous composite plates for dynamic applications
Popis výsledku v původním jazyce
Smart structures with integrated macro fiber composite (MFC) piezoelectric transducers have been increasingly investigated in engineering. A simple but elaborate system model of such smart structure not only can predict system dynamics, but also can reduce challenges in application. Therefore, the equivalent force (EF) modeling approach is presented to model the plate-type structures with integrated piezoelectric actuators in a semi-analytical fashion: analytical EF is applied to finite element (FE) structural models. The EF is derived from the bending effort balance between the equivalent loads, and the equivalent loads are developed by introducing the spatial distribution into a generalized Hamilton's principle. The proposed approach is validated by cantilever aluminum beams with integrated MFC actuators and it is consistent with existing alternative approaches from literature. Then, it is validated on a non-homogeneous composite plate for dynamic applications: a laminated composite plate with integrated MFC actuators was manufactured and both an impact test and MFC drive test were elaborately carried out. The modal validation shows the high fidelity of the EF model and the predicted velocity frequency responds functions (FRFs) agree well with experimental measurement. Being applicable to both numerical and analytical modeling approaches, the EF is actually assigned to the out-plane displacement on the structure and distributed along the edges of the actuators. Therefore, it is convenient to use in EF models. The rotational degrees of freedom could also be eliminated in the EF models without losing structure complexity, since they neither link to the electromechanical coupling nor have a significant kinetic contribution to the system.
Název v anglickém jazyce
Equivalent force modeling of macro fiber composite actuators integrated into nonhomogeneous composite plates for dynamic applications
Popis výsledku anglicky
Smart structures with integrated macro fiber composite (MFC) piezoelectric transducers have been increasingly investigated in engineering. A simple but elaborate system model of such smart structure not only can predict system dynamics, but also can reduce challenges in application. Therefore, the equivalent force (EF) modeling approach is presented to model the plate-type structures with integrated piezoelectric actuators in a semi-analytical fashion: analytical EF is applied to finite element (FE) structural models. The EF is derived from the bending effort balance between the equivalent loads, and the equivalent loads are developed by introducing the spatial distribution into a generalized Hamilton's principle. The proposed approach is validated by cantilever aluminum beams with integrated MFC actuators and it is consistent with existing alternative approaches from literature. Then, it is validated on a non-homogeneous composite plate for dynamic applications: a laminated composite plate with integrated MFC actuators was manufactured and both an impact test and MFC drive test were elaborately carried out. The modal validation shows the high fidelity of the EF model and the predicted velocity frequency responds functions (FRFs) agree well with experimental measurement. Being applicable to both numerical and analytical modeling approaches, the EF is actually assigned to the out-plane displacement on the structure and distributed along the edges of the actuators. Therefore, it is convenient to use in EF models. The rotational degrees of freedom could also be eliminated in the EF models without losing structure complexity, since they neither link to the electromechanical coupling nor have a significant kinetic contribution to the system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SMART MATERIALS & STRUCTURES
ISSN
0964-1726
e-ISSN
1361-665X
Svazek periodika
26
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000407771600006
EID výsledku v databázi Scopus
2-s2.0-85028610431