Structure-preserving low-order modeling approach of laminated composite plates integrated with macro-fiber composite transducers for dynamic applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00324503" target="_blank" >RIV/68407700:21230/19:00324503 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.compstruct.2018.09.062" target="_blank" >https://doi.org/10.1016/j.compstruct.2018.09.062</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruct.2018.09.062" target="_blank" >10.1016/j.compstruct.2018.09.062</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure-preserving low-order modeling approach of laminated composite plates integrated with macro-fiber composite transducers for dynamic applications
Popis výsledku v původním jazyce
An Equivalent Substructure Modeling (ESM) approach of laminated composite plates with integrated macro-fiber composite (MFC) transducers is described. The proposed approach generates structure-preserving low-order system models for dynamic applications such as vibration suppression and energy harvesting. The direct piezoelectric effect of MFC transducers is derived from the electrical boundary conditions and it has the same coupling patterns as equivalent forces which describe the inverse piezoelectric effect. Hence, the reversibility of the piezoelectric effect is ensured and the electrical dynamics of the system can be simulated. The dual electromechanical couplings are assigned to a low-order structural model generated by an equivalent substructure concept. A laminated composite plate with integrated MFC transducers is used for validations and the simulated results agree well with experimental data. Two given study cases demonstrated that the ESM approach not only can generate accurate low-order system models but also provides a flexible fashion to design piezoelectric composite systems.
Název v anglickém jazyce
Structure-preserving low-order modeling approach of laminated composite plates integrated with macro-fiber composite transducers for dynamic applications
Popis výsledku anglicky
An Equivalent Substructure Modeling (ESM) approach of laminated composite plates with integrated macro-fiber composite (MFC) transducers is described. The proposed approach generates structure-preserving low-order system models for dynamic applications such as vibration suppression and energy harvesting. The direct piezoelectric effect of MFC transducers is derived from the electrical boundary conditions and it has the same coupling patterns as equivalent forces which describe the inverse piezoelectric effect. Hence, the reversibility of the piezoelectric effect is ensured and the electrical dynamics of the system can be simulated. The dual electromechanical couplings are assigned to a low-order structural model generated by an equivalent substructure concept. A laminated composite plate with integrated MFC transducers is used for validations and the simulated results agree well with experimental data. Two given study cases demonstrated that the ESM approach not only can generate accurate low-order system models but also provides a flexible fashion to design piezoelectric composite systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Composite Structures
ISSN
0263-8223
e-ISSN
1879-1085
Svazek periodika
208
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
287-297
Kód UT WoS článku
000451025300025
EID výsledku v databázi Scopus
2-s2.0-85054726283