Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315207" target="_blank" >RIV/68407700:21230/17:00315207 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-68711-7_10" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-68711-7_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68711-7_10" target="_blank" >10.1007/978-3-319-68711-7_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers
Popis výsledku v původním jazyce
We study the problem of detecting data exfiltration in computer networks. We focus on the performance of optimal defense strategies with respect to an attacker’s knowledge about typical network behavior and his ability to influence the standard traffic. Internal attackers know the typical upload behavior of the compromised host and may be able to discontinue standard uploads in favor of the exfiltration. External attackers do not immediately know the behavior of the compromised host, but they can learn it from observations.We model the problem as a sequential game of imperfect information, where the network administrator selects the thresholds for the detector, while the attacker chooses how much data to exfiltrate in each time step. We present novel algorithms for approximating the optimal defense strategies in the form of Stackelberg equilibria. We analyze the scalability of the algorithms and efficiency of the produced strategies in a case study based on real-world uploads of almost six thousand users to Google Drive. We show that with the computed defense strategies, the attacker exfiltrates 2–3 times less data than with simple heuristics; randomized defense strategies are up to 30% more effective than deterministic ones, and substantially more effective defense strategies are possible if the defense is customized for groups of hosts with similar behavior.
Název v anglickém jazyce
Optimal Strategies for Detecting Data Exfiltration by Internal and External Attackers
Popis výsledku anglicky
We study the problem of detecting data exfiltration in computer networks. We focus on the performance of optimal defense strategies with respect to an attacker’s knowledge about typical network behavior and his ability to influence the standard traffic. Internal attackers know the typical upload behavior of the compromised host and may be able to discontinue standard uploads in favor of the exfiltration. External attackers do not immediately know the behavior of the compromised host, but they can learn it from observations.We model the problem as a sequential game of imperfect information, where the network administrator selects the thresholds for the detector, while the attacker chooses how much data to exfiltrate in each time step. We present novel algorithms for approximating the optimal defense strategies in the form of Stackelberg equilibria. We analyze the scalability of the algorithms and efficiency of the produced strategies in a case study based on real-world uploads of almost six thousand users to Google Drive. We show that with the computed defense strategies, the attacker exfiltrates 2–3 times less data than with simple heuristics; randomized defense strategies are up to 30% more effective than deterministic ones, and substantially more effective defense strategies are possible if the defense is customized for groups of hosts with similar behavior.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23235S" target="_blank" >GA15-23235S: Abstrakce a extenzivní hry s nedokonalou pamětí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-319-68710-0
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
22
Strana od-do
171-192
Název nakladatele
Springer VDI Verlag
Místo vydání
Düsseldorf
Místo konání akce
Vienna
Datum konání akce
23. 10. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—