Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discovering Imperfectly Observable Adversarial Actions Using Anomaly Detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00347510" target="_blank" >RIV/68407700:21230/20:00347510 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://arxiv.org/ftp/arxiv/papers/2004/2004.10638.pdf" target="_blank" >https://arxiv.org/ftp/arxiv/papers/2004/2004.10638.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discovering Imperfectly Observable Adversarial Actions Using Anomaly Detection

  • Popis výsledku v původním jazyce

    Defenders in security problems often use anomaly detection (AD) to examine effects of (adversarial) actions and detect malicious behavior. Attackers seek to accomplish their goal (e.g., exfiltrate data) while avoiding the detection. Game theory can be used to reason about this interaction. While AD has been used in game-theoretic frameworks before, we extend the existing works to more realistic settings by (1) allowing players to have continuous action spaces and (2) assuming that the defender cannot perfectly observe the action of the attacker. We solve our model by (1) extending existing algorithms that discretize the action spaces and use linear programming and (2) by training a neural network using an algorithm based on exploitability descent, termed EDA. While both algorithms are applicable for low feature-space dimensions, EDA produces less exploitable strategies and scales to higher dimensions. In a data exfiltration scenario, EDA outperforms a range of classifiers when facing a targeted exploitative attacker.

  • Název v anglickém jazyce

    Discovering Imperfectly Observable Adversarial Actions Using Anomaly Detection

  • Popis výsledku anglicky

    Defenders in security problems often use anomaly detection (AD) to examine effects of (adversarial) actions and detect malicious behavior. Attackers seek to accomplish their goal (e.g., exfiltrate data) while avoiding the detection. Game theory can be used to reason about this interaction. While AD has been used in game-theoretic frameworks before, we extend the existing works to more realistic settings by (1) allowing players to have continuous action spaces and (2) assuming that the defender cannot perfectly observe the action of the attacker. We solve our model by (1) extending existing algorithms that discretize the action spaces and use linear programming and (2) by training a neural network using an algorithm based on exploitability descent, termed EDA. While both algorithms are applicable for low feature-space dimensions, EDA produces less exploitable strategies and scales to higher dimensions. In a data exfiltration scenario, EDA outperforms a range of classifiers when facing a targeted exploitative attacker.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 19th International Conference on Autonomous Agents and Multi-Agent Systems

  • ISBN

    978-1-4503-7518-4

  • ISSN

    1548-8403

  • e-ISSN

  • Počet stran výsledku

    3

  • Strana od-do

    1969-1971

  • Název nakladatele

    IFAAMAS

  • Místo vydání

    County of Richland

  • Místo konání akce

    Auckland

  • Datum konání akce

    9. 5. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku