Optimizing Honeypot Strategies Against Dynamic Lateral Movement Using Partially Observable Stochastic Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332702" target="_blank" >RIV/68407700:21230/19:00332702 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cose.2019.101579" target="_blank" >https://doi.org/10.1016/j.cose.2019.101579</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cose.2019.101579" target="_blank" >10.1016/j.cose.2019.101579</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimizing Honeypot Strategies Against Dynamic Lateral Movement Using Partially Observable Stochastic Games
Popis výsledku v původním jazyce
Partially observable stochastic games (POSGs) are a general game-theoretic model for capturing dynamic interactions where players have partial information. The existing algorithms for solving subclasses of POSGs have theoretical guarantees for converging to approximate optimal strategies, however, their scalability is limited and they cannot be directly used to solve games of realistic sizes. In our problem, the attacker uses lateral movement through the network in order to reach a specific host, while the defender wants to discover the attacker by dynamically reallocating honeypots. We demonstrate that restricting to a specific domain allows us to substantially improve existing algorithms: (1) we formulate a compact representation of uncertainty the defender faces, (2) we exploit the incremental strategy-generation method that over iterations expands the possible actions for players. The experimental evaluation shows that our novel algorithms scale several orders of magnitude better compared to the existing state of the art.
Název v anglickém jazyce
Optimizing Honeypot Strategies Against Dynamic Lateral Movement Using Partially Observable Stochastic Games
Popis výsledku anglicky
Partially observable stochastic games (POSGs) are a general game-theoretic model for capturing dynamic interactions where players have partial information. The existing algorithms for solving subclasses of POSGs have theoretical guarantees for converging to approximate optimal strategies, however, their scalability is limited and they cannot be directly used to solve games of realistic sizes. In our problem, the attacker uses lateral movement through the network in order to reach a specific host, while the defender wants to discover the attacker by dynamically reallocating honeypots. We demonstrate that restricting to a specific domain allows us to substantially improve existing algorithms: (1) we formulate a compact representation of uncertainty the defender faces, (2) we exploit the incremental strategy-generation method that over iterations expands the possible actions for players. The experimental evaluation shows that our novel algorithms scale several orders of magnitude better compared to the existing state of the art.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers & Security
ISSN
0167-4048
e-ISSN
1872-6208
Svazek periodika
87
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000494048500012
EID výsledku v databázi Scopus
2-s2.0-85070920708