Solving zero-sum one-sided partially observable stochastic games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364587" target="_blank" >RIV/68407700:21230/23:00364587 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.artint.2022.103838" target="_blank" >https://doi.org/10.1016/j.artint.2022.103838</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.artint.2022.103838" target="_blank" >10.1016/j.artint.2022.103838</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving zero-sum one-sided partially observable stochastic games
Popis výsledku v původním jazyce
Many real-world situations are dynamic, with long-term interactions between multiple agents with uncertainty and limited observations. The agents must reason about which actions to take while also predicting and learning about what actions the other agents will take and how their choices will interact. In the most general setting, there is no limitation on the length of the sequence of actions the agent can perform - that is, there is no fixed horizon that can be used as an endpoint for analysis. These settings can be modeled as partially observable stochastic games (POSGs). Many adversarial domains (e.g., security settings) can be modeled as strictly competitive (or zero-sum) variants of these games. While these models are capable of modeling a wide variety of realistic problems, solving general POSGs is computationally intractable, so we focus on a broad subclass of POSGs called one-sided POSGs. In these games, only one agent has imperfect information while their opponent has full knowledge of the current situation. We provide a complete approach for solving zero-sum, one-sided POSGs: we (1) give a theoretical analysis of one-sided POSGs and their value functions, (2) show that a variant of a value-iteration algorithm converges in this setting, (3) adapt the heuristic search value-iteration algorithm for solving one-sided POSGs, (4) describe how to use approximate value functions to derive strategies in the game, and (5) experimentally demonstrate that our algorithm can solve one-sided POSGs of non-trivial sizes and analyze the scalability of our algorithm in three different domains: pursuit-evasion, patrolling, and search games.(c) 2022 Elsevier B.V. All rights reserved.
Název v anglickém jazyce
Solving zero-sum one-sided partially observable stochastic games
Popis výsledku anglicky
Many real-world situations are dynamic, with long-term interactions between multiple agents with uncertainty and limited observations. The agents must reason about which actions to take while also predicting and learning about what actions the other agents will take and how their choices will interact. In the most general setting, there is no limitation on the length of the sequence of actions the agent can perform - that is, there is no fixed horizon that can be used as an endpoint for analysis. These settings can be modeled as partially observable stochastic games (POSGs). Many adversarial domains (e.g., security settings) can be modeled as strictly competitive (or zero-sum) variants of these games. While these models are capable of modeling a wide variety of realistic problems, solving general POSGs is computationally intractable, so we focus on a broad subclass of POSGs called one-sided POSGs. In these games, only one agent has imperfect information while their opponent has full knowledge of the current situation. We provide a complete approach for solving zero-sum, one-sided POSGs: we (1) give a theoretical analysis of one-sided POSGs and their value functions, (2) show that a variant of a value-iteration algorithm converges in this setting, (3) adapt the heuristic search value-iteration algorithm for solving one-sided POSGs, (4) describe how to use approximate value functions to derive strategies in the game, and (5) experimentally demonstrate that our algorithm can solve one-sided POSGs of non-trivial sizes and analyze the scalability of our algorithm in three different domains: pursuit-evasion, patrolling, and search games.(c) 2022 Elsevier B.V. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence
ISSN
0004-3702
e-ISSN
1872-7921
Svazek periodika
316
Číslo periodika v rámci svazku
103838
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
47
Strana od-do
—
Kód UT WoS článku
000912095000001
EID výsledku v databázi Scopus
2-s2.0-85144303060