Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving zero-sum one-sided partially observable stochastic games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F23%3A00364587" target="_blank" >RIV/68407700:21230/23:00364587 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.artint.2022.103838" target="_blank" >https://doi.org/10.1016/j.artint.2022.103838</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.artint.2022.103838" target="_blank" >10.1016/j.artint.2022.103838</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving zero-sum one-sided partially observable stochastic games

  • Popis výsledku v původním jazyce

    Many real-world situations are dynamic, with long-term interactions between multiple agents with uncertainty and limited observations. The agents must reason about which actions to take while also predicting and learning about what actions the other agents will take and how their choices will interact. In the most general setting, there is no limitation on the length of the sequence of actions the agent can perform - that is, there is no fixed horizon that can be used as an endpoint for analysis. These settings can be modeled as partially observable stochastic games (POSGs). Many adversarial domains (e.g., security settings) can be modeled as strictly competitive (or zero-sum) variants of these games. While these models are capable of modeling a wide variety of realistic problems, solving general POSGs is computationally intractable, so we focus on a broad subclass of POSGs called one-sided POSGs. In these games, only one agent has imperfect information while their opponent has full knowledge of the current situation. We provide a complete approach for solving zero-sum, one-sided POSGs: we (1) give a theoretical analysis of one-sided POSGs and their value functions, (2) show that a variant of a value-iteration algorithm converges in this setting, (3) adapt the heuristic search value-iteration algorithm for solving one-sided POSGs, (4) describe how to use approximate value functions to derive strategies in the game, and (5) experimentally demonstrate that our algorithm can solve one-sided POSGs of non-trivial sizes and analyze the scalability of our algorithm in three different domains: pursuit-evasion, patrolling, and search games.(c) 2022 Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Solving zero-sum one-sided partially observable stochastic games

  • Popis výsledku anglicky

    Many real-world situations are dynamic, with long-term interactions between multiple agents with uncertainty and limited observations. The agents must reason about which actions to take while also predicting and learning about what actions the other agents will take and how their choices will interact. In the most general setting, there is no limitation on the length of the sequence of actions the agent can perform - that is, there is no fixed horizon that can be used as an endpoint for analysis. These settings can be modeled as partially observable stochastic games (POSGs). Many adversarial domains (e.g., security settings) can be modeled as strictly competitive (or zero-sum) variants of these games. While these models are capable of modeling a wide variety of realistic problems, solving general POSGs is computationally intractable, so we focus on a broad subclass of POSGs called one-sided POSGs. In these games, only one agent has imperfect information while their opponent has full knowledge of the current situation. We provide a complete approach for solving zero-sum, one-sided POSGs: we (1) give a theoretical analysis of one-sided POSGs and their value functions, (2) show that a variant of a value-iteration algorithm converges in this setting, (3) adapt the heuristic search value-iteration algorithm for solving one-sided POSGs, (4) describe how to use approximate value functions to derive strategies in the game, and (5) experimentally demonstrate that our algorithm can solve one-sided POSGs of non-trivial sizes and analyze the scalability of our algorithm in three different domains: pursuit-evasion, patrolling, and search games.(c) 2022 Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence

  • ISSN

    0004-3702

  • e-ISSN

    1872-7921

  • Svazek periodika

    316

  • Číslo periodika v rámci svazku

    103838

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    47

  • Strana od-do

  • Kód UT WoS článku

    000912095000001

  • EID výsledku v databázi Scopus

    2-s2.0-85144303060