Using Neural Network Formalism to Solve Multiple-Instance Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315379" target="_blank" >RIV/68407700:21230/17:00315379 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-59072-1_17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-59072-1_17" target="_blank" >10.1007/978-3-319-59072-1_17</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Neural Network Formalism to Solve Multiple-Instance Problems
Popis výsledku v původním jazyce
a fixed length, whereas describing them by means of a set of vectors is more natural. Therefore, Multiple instance learning (MIL) techniques have been constantly gaining in importance throughout the last years. MIL formalism assumes that each object (sample) is represented by a set (bag) of feature vectors (instances) of fixed length, where knowledge about objects (e.g., class label) is available on bag level but not necessarily on instance level. Many standard tools including supervised classifiers have been already adapted to MIL setting since the problem got formalized in the late nineties. In this work we propose a neural network (NN) based formalism that intuitively bridges the gap between MIL problem definition and the vast existing knowledge-base of standard models and classifiers. We show that the proposed NN formalism is effectively optimizable by a back-propagation algorithm and can reveal unknown patterns inside bags. Comparison to 14 types of classifiers from the prior art on a set of 20 publicly available benchmark datasets confirms the advantages and accuracy of the proposed solution.
Název v anglickém jazyce
Using Neural Network Formalism to Solve Multiple-Instance Problems
Popis výsledku anglicky
a fixed length, whereas describing them by means of a set of vectors is more natural. Therefore, Multiple instance learning (MIL) techniques have been constantly gaining in importance throughout the last years. MIL formalism assumes that each object (sample) is represented by a set (bag) of feature vectors (instances) of fixed length, where knowledge about objects (e.g., class label) is available on bag level but not necessarily on instance level. Many standard tools including supervised classifiers have been already adapted to MIL setting since the problem got formalized in the late nineties. In this work we propose a neural network (NN) based formalism that intuitively bridges the gap between MIL problem definition and the vast existing knowledge-base of standard models and classifiers. We show that the proposed NN formalism is effectively optimizable by a back-propagation algorithm and can reveal unknown patterns inside bags. Comparison to 14 types of classifiers from the prior art on a set of 20 publicly available benchmark datasets confirms the advantages and accuracy of the proposed solution.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advances in Neural Networks - ISNN 2017
ISBN
978-3-319-59071-4
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
135-142
Název nakladatele
Springer
Místo vydání
Wien
Místo konání akce
Hokkaido
Datum konání akce
21. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—