Point cloud registration from local feature correspondences—Evaluation on challenging datasets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315550" target="_blank" >RIV/68407700:21230/17:00315550 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pone.0187943" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0187943</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0187943" target="_blank" >10.1371/journal.pone.0187943</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Point cloud registration from local feature correspondences—Evaluation on challenging datasets
Popis výsledku v původním jazyce
Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.
Název v anglickém jazyce
Point cloud registration from local feature correspondences—Evaluation on challenging datasets
Popis výsledku anglicky
Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
1932-6203
Svazek periodika
12
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000415121200050
EID výsledku v databázi Scopus
2-s2.0-85033776560