Concrete Quantum Logics and Delta-Logics, States and Delta-States
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315747" target="_blank" >RIV/68407700:21230/17:00315747 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10773-017-3359-x" target="_blank" >http://dx.doi.org/10.1007/s10773-017-3359-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10773-017-3359-x" target="_blank" >10.1007/s10773-017-3359-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Concrete Quantum Logics and Delta-Logics, States and Delta-States
Popis výsledku v původním jazyce
By a concrete quantum logic (in short, by a logic) we mean the orthomodular poset that is set-representable. If L = (Omega, L) is a logic and L is closed under the formation of symmetric difference, Delta, we call L a Delta-logic. In the first part we situate the known results on logics and states to the context of Delta-logics and Delta-states (the Delta-states are the states that are subadditive with respect to the symmetric difference). Moreover, we observe that the rather prominent logic epsilon(even)(Omega) of all even- coeven subsets of the countable set Omega possesses only Delta-states. Then we show when a state on the logics given by the divisibility relation allows for an extension as a state. In the next paragraph we consider the so called density logic and its Delta-closure. We find that the Delta-closure coincides with the power set. Then we investigate other properties of the density logic and its factor.
Název v anglickém jazyce
Concrete Quantum Logics and Delta-Logics, States and Delta-States
Popis výsledku anglicky
By a concrete quantum logic (in short, by a logic) we mean the orthomodular poset that is set-representable. If L = (Omega, L) is a logic and L is closed under the formation of symmetric difference, Delta, we call L a Delta-logic. In the first part we situate the known results on logics and states to the context of Delta-logics and Delta-states (the Delta-states are the states that are subadditive with respect to the symmetric difference). Moreover, we observe that the rather prominent logic epsilon(even)(Omega) of all even- coeven subsets of the countable set Omega possesses only Delta-states. Then we show when a state on the logics given by the divisibility relation allows for an extension as a state. In the next paragraph we consider the so called density logic and its Delta-closure. We find that the Delta-closure coincides with the power set. Then we investigate other properties of the density logic and its factor.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10300 - Physical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Theoretical Physics
ISSN
0020-7748
e-ISSN
1572-9575
Svazek periodika
56
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3852-3859
Kód UT WoS článku
000414787000014
EID výsledku v databázi Scopus
2-s2.0-85017183334