FreMEn: Frequency Map Enhancement for Long-Term Autonomy of Mobile Robots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00317553" target="_blank" >RIV/68407700:21230/17:00317553 - isvavai.cz</a>
Výsledek na webu
<a href="https://cloudslam.fer.hr/cloudslam/workshop/speakers" target="_blank" >https://cloudslam.fer.hr/cloudslam/workshop/speakers</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
FreMEn: Frequency Map Enhancement for Long-Term Autonomy of Mobile Robots
Popis výsledku v původním jazyce
While robotic mapping of static environments has been widely studied, life-long mapping in non-stationary environments is still an open problem. We present an approach for long-term representation of natural environments, where many of the observed changes are caused by pseudo-periodic factors, such as seasonal variations, or humans performing their daily chores. Rather than using a fixed probability value, our method models the uncertainty of the elementary environment states by their persistence and frequency spectra. This allows to integrate sparse and irregular observations obtained during long-term deployments of mobile robots into memory-efficient models that reflect the recurring patterns of activity in the environment. The frequency-enhanced spatio-temporal models allow to predict the future environment states, which improves the efficiency of mobile robot operation in changing environments. In a series of experiments performed over periods of weeks to years, we demonstrate that the proposed approach improves mobile robot localization, path and task planning, activity recognition and allows for life-long spatio-temporal exploration.
Název v anglickém jazyce
FreMEn: Frequency Map Enhancement for Long-Term Autonomy of Mobile Robots
Popis výsledku anglicky
While robotic mapping of static environments has been widely studied, life-long mapping in non-stationary environments is still an open problem. We present an approach for long-term representation of natural environments, where many of the observed changes are caused by pseudo-periodic factors, such as seasonal variations, or humans performing their daily chores. Rather than using a fixed probability value, our method models the uncertainty of the elementary environment states by their persistence and frequency spectra. This allows to integrate sparse and irregular observations obtained during long-term deployments of mobile robots into memory-efficient models that reflect the recurring patterns of activity in the environment. The frequency-enhanced spatio-temporal models allow to predict the future environment states, which improves the efficiency of mobile robot operation in changing environments. In a series of experiments performed over periods of weeks to years, we demonstrate that the proposed approach improves mobile robot localization, path and task planning, activity recognition and allows for life-long spatio-temporal exploration.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů