Fremen: Frequency map enhancement for long-term mobile robot autonomy in changing environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311497" target="_blank" >RIV/68407700:21230/17:00311497 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7878680/" target="_blank" >http://ieeexplore.ieee.org/document/7878680/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TRO.2017.2665664" target="_blank" >10.1109/TRO.2017.2665664</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fremen: Frequency map enhancement for long-term mobile robot autonomy in changing environments
Popis výsledku v původním jazyce
We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot’s long-term performance in dynamic environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model’s predictive capabilities improve mobile robot localisation and navigation in changing environments.
Název v anglickém jazyce
Fremen: Frequency map enhancement for long-term mobile robot autonomy in changing environments
Popis výsledku anglicky
We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot’s long-term performance in dynamic environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model’s predictive capabilities improve mobile robot localisation and navigation in changing environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Prostorově temporální representace pro dlouhodobou navigaci mobilních robotů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Robotics
ISSN
1552-3098
e-ISSN
1941-0468
Svazek periodika
33
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
964-977
Kód UT WoS článku
000407395200015
EID výsledku v databázi Scopus
2-s2.0-85015635452