Warped Hypertime Representations for Long-term Autonomy of Mobile Robots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332172" target="_blank" >RIV/68407700:21230/19:00332172 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/LRA.2019.2926682" target="_blank" >https://doi.org/10.1109/LRA.2019.2926682</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2019.2926682" target="_blank" >10.1109/LRA.2019.2926682</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Warped Hypertime Representations for Long-term Autonomy of Mobile Robots
Popis výsledku v původním jazyce
This paper presents a novel method for introducing time into discrete and continuous spatial representations used in mobile robotics, by modelling long-term, pseudo-periodic variations caused by human activities or natural processes. Unlike previous approaches, the proposed method does not treat time and space separately, and its continuous nature respects both the temporal and spatial continuity of the modeled phenomena. The key idea is to extend the spatial model with a set of wrapped time dimensions that represent the periodicities of the observed events. By performing clustering over this extended representation, we obtain a model that allows the prediction of probabilistic distributions of future states and events in both discrete and continuous spatial representations. We apply the proposed algorithm to several long-term datasets acquired by mobile robots and show that the method enables a robot to predict future states of representations with different dimensions. The experiments further show that the method achieves more accurate predictions than the previous state of the art.
Název v anglickém jazyce
Warped Hypertime Representations for Long-term Autonomy of Mobile Robots
Popis výsledku anglicky
This paper presents a novel method for introducing time into discrete and continuous spatial representations used in mobile robotics, by modelling long-term, pseudo-periodic variations caused by human activities or natural processes. Unlike previous approaches, the proposed method does not treat time and space separately, and its continuous nature respects both the temporal and spatial continuity of the modeled phenomena. The key idea is to extend the spatial model with a set of wrapped time dimensions that represent the periodicities of the observed events. By performing clustering over this extended representation, we obtain a model that allows the prediction of probabilistic distributions of future states and events in both discrete and continuous spatial representations. We apply the proposed algorithm to several long-term datasets acquired by mobile robots and show that the method enables a robot to predict future states of representations with different dimensions. The experiments further show that the method achieves more accurate predictions than the previous state of the art.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3310-3317
Kód UT WoS článku
000476791300026
EID výsledku v databázi Scopus
2-s2.0-85069761513