Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cardinality-based variability modeling with AutomationML

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00317893" target="_blank" >RIV/68407700:21230/17:00317893 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/8247711/" target="_blank" >http://ieeexplore.ieee.org/document/8247711/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ETFA.2017.8247711" target="_blank" >10.1109/ETFA.2017.8247711</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cardinality-based variability modeling with AutomationML

  • Popis výsledku v původním jazyce

    Variability modeling is an emerging topic in the general field of systems engineering and, with current trends such as Industrie 4.0, it gains more and more interest in the domain of production systems. Therefore, it is not sufficient to describe systems in several specific cases, but instead families of systems have to be used. In this paper we introduce a role class library for AutomationML to explicitly represent variability. This allows to exchange not only system descriptions but also system family descriptions. We argue for a light-weight extension of AutomationML. The variability-based modeling approach is based on cardinalities, which is a well-known concept from conceptual modeling and feature modeling. Furthermore, we also show how instantiations of variability models can be validated by our EMF-based AutomationML workbench.

  • Název v anglickém jazyce

    Cardinality-based variability modeling with AutomationML

  • Popis výsledku anglicky

    Variability modeling is an emerging topic in the general field of systems engineering and, with current trends such as Industrie 4.0, it gains more and more interest in the domain of production systems. Therefore, it is not sufficient to describe systems in several specific cases, but instead families of systems have to be used. In this paper we introduce a role class library for AutomationML to explicitly represent variability. This allows to exchange not only system descriptions but also system family descriptions. We argue for a light-weight extension of AutomationML. The variability-based modeling approach is based on cardinalities, which is a well-known concept from conceptual modeling and feature modeling. Furthermore, we also show how instantiations of variability models can be validated by our EMF-based AutomationML workbench.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)

  • ISBN

    978-1-5090-6505-9

  • ISSN

  • e-ISSN

    1946-0740

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway, NJ

  • Místo konání akce

    Limassol

  • Datum konání akce

    12. 9. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000427812000146