Genomic single rule learning with an ontology-based refinement operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322364" target="_blank" >RIV/68407700:21230/18:00322364 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.enbik.cz/enbik2018/abs/u166_p35_s1_P.doc" target="_blank" >http://www.enbik.cz/enbik2018/abs/u166_p35_s1_P.doc</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Genomic single rule learning with an ontology-based refinement operator
Popis výsledku v původním jazyce
Rule learning is a kind of machine learning method that induces a set of classification rules from a given set of training examples. As a well-known representative of this learners, we can adduce CN2, RIPPER, or PRIM. All of them use if-then statement for corresponding hypothesis formulation where the antecedent is in the form of a conjunction of logical terms, and the consequent is a class label. From a bioinformatician point of view, these learners are suitable especially for their easy and clear interpretation of hypothesis on the contrary of a neural network, for example. The other thing that can help biologists interpret their data in a more natural way is a background knowledge. Nowadays, the most popular form of background knowledge in the field of bioinformatics are ontologies, especially Gene Ontology or Disease Ontology. There are other types of structured databases such as KEGG, that can also be interpreted as an ontology or a taxonomy. In our work, we combine these two concepts, rule learning and ontologies/taxonomies, together
Název v anglickém jazyce
Genomic single rule learning with an ontology-based refinement operator
Popis výsledku anglicky
Rule learning is a kind of machine learning method that induces a set of classification rules from a given set of training examples. As a well-known representative of this learners, we can adduce CN2, RIPPER, or PRIM. All of them use if-then statement for corresponding hypothesis formulation where the antecedent is in the form of a conjunction of logical terms, and the consequent is a class label. From a bioinformatician point of view, these learners are suitable especially for their easy and clear interpretation of hypothesis on the contrary of a neural network, for example. The other thing that can help biologists interpret their data in a more natural way is a background knowledge. Nowadays, the most popular form of background knowledge in the field of bioinformatics are ontologies, especially Gene Ontology or Disease Ontology. There are other types of structured databases such as KEGG, that can also be interpreted as an ontology or a taxonomy. In our work, we combine these two concepts, rule learning and ontologies/taxonomies, together
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/NV17-31398A" target="_blank" >NV17-31398A: Dlouhé nekódující RNA u myelodysplastického syndromu: klinický význam a implikace pro patogenezi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů