Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322574" target="_blank" >RIV/68407700:21230/18:00322574 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201900" target="_blank" >http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201900</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0201900" target="_blank" >10.1371/journal.pone.0201900</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records

  • Popis výsledku v původním jazyce

    This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular artifacts, which has been previously attributed to the phenomenon called overlearning. We address this problem by projecting an EEG record into several subspaces with a lower dimension, and perform the ICA on each subspace separately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and muscular artifacts are better separated. Once the muscular artifacts are removed, the signals in the individual subspaces are combined to provide an artifact free EEG record. We show that for short signals and high number of EEG channels our approach outperforms the currently available ICA based algorithms for muscular artifact removal. The proposed technique can efficiently suppress ICA overlearning for short signal segments of high density EEG signals.

  • Název v anglickém jazyce

    Suppression of overlearning in independent component analysis used for removal of muscular artifacts from electroencephalographic records

  • Popis výsledku anglicky

    This paper addresses the overlearning problem in the independent component analysis (ICA) used for the removal of muscular artifacts from electroencephalographic (EEG) records. We note that for short EEG records with high number of channels the ICA fails to separate artifact-free EEG and muscular artifacts, which has been previously attributed to the phenomenon called overlearning. We address this problem by projecting an EEG record into several subspaces with a lower dimension, and perform the ICA on each subspace separately. Due to a reduced dimension of the subspaces, the overlearning is suppressed, and muscular artifacts are better separated. Once the muscular artifacts are removed, the signals in the individual subspaces are combined to provide an artifact free EEG record. We show that for short signals and high number of EEG channels our approach outperforms the currently available ICA based algorithms for muscular artifact removal. The proposed technique can efficiently suppress ICA overlearning for short signal segments of high density EEG signals.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    21

  • Strana od-do

  • Kód UT WoS článku

    000441662800016

  • EID výsledku v databázi Scopus

    2-s2.0-85051552389