Efficient Recovery of Essential Matrix From Two Affine Correspondences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324018" target="_blank" >RIV/68407700:21230/18:00324018 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8392782" target="_blank" >https://ieeexplore.ieee.org/document/8392782</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TIP.2018.2849866" target="_blank" >10.1109/TIP.2018.2849866</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient Recovery of Essential Matrix From Two Affine Correspondences
Popis výsledku v původním jazyce
We propose a method to estimate the essential matrix using two affine correspondences for a pair of calibrated perspective cameras. Two novel, linear constraints are derived between the essential matrix and a local affine transformation. The proposed method is also applicable to the over-determined case. We extend the normalization technique of Hartley to local affinities and show how the intrinsic camera matrices modify them. Even though perspective cameras are assumed, the constraints can straightforwardly be generalized to arbitrary camera models since they describe the relationship between local affinities and epipolar lines (or curves). Benefiting from the low number of exploited points, it can be used in robust estimators, e.g. RANSAC, as an engine, thus leading to significantly less iterations than the traditional point-based methods. The algorithm is validated both on synthetic and publicly available data sets and compared with the state-of-the-art. Its applicability is demonstrated on two-view multi-motion fitting, i.e., finding multiple fundamental matrices simultaneously, and outlier rejection.
Název v anglickém jazyce
Efficient Recovery of Essential Matrix From Two Affine Correspondences
Popis výsledku anglicky
We propose a method to estimate the essential matrix using two affine correspondences for a pair of calibrated perspective cameras. Two novel, linear constraints are derived between the essential matrix and a local affine transformation. The proposed method is also applicable to the over-determined case. We extend the normalization technique of Hartley to local affinities and show how the intrinsic camera matrices modify them. Even though perspective cameras are assumed, the constraints can straightforwardly be generalized to arbitrary camera models since they describe the relationship between local affinities and epipolar lines (or curves). Benefiting from the low number of exploited points, it can be used in robust estimators, e.g. RANSAC, as an engine, thus leading to significantly less iterations than the traditional point-based methods. The algorithm is validated both on synthetic and publicly available data sets and compared with the state-of-the-art. Its applicability is demonstrated on two-view multi-motion fitting, i.e., finding multiple fundamental matrices simultaneously, and outlier rejection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Image Processing
ISSN
1057-7149
e-ISSN
1941-0042
Svazek periodika
27
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
5328-5337
Kód UT WoS článku
000440203500010
EID výsledku v databázi Scopus
2-s2.0-85049090983