Community-based anomaly detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324718" target="_blank" >RIV/68407700:21230/18:00324718 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/18:00324718
Výsledek na webu
<a href="http://dx.doi.org/10.1109/WIFS.2018.8630772" target="_blank" >http://dx.doi.org/10.1109/WIFS.2018.8630772</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WIFS.2018.8630772" target="_blank" >10.1109/WIFS.2018.8630772</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Community-based anomaly detection
Popis výsledku v původním jazyce
Network behaviour anomaly detection systems can detect zero-day attacks and work even with encrypted traffic. They maintain a model of normal behaviour and report any deviation as anomaly. Typically, a separated model for each host is generated or there is one model for the whole network. The model of normal can be built for the whole network or for each network host separately. The per host models suffer from a small amount of noisy data as the behaviour of a single user is typically not very stable. The single model for the whole network is more robust to fluctuations, but it is trying to find a normal behaviour of a group of hosts with possibly diverse behaviour. We propose a method for clustering network hosts based on their network behaviour to create groups of hosts that behave similarly. The anomaly detection models trained on such groups of network hosts are more robust to fluctuations of the behaviour of individual hosts when compared to the per host models. It is able to detect finer anomalies (e.g. stealthy data ex-filtration) that would be otherwise hidden by modelling diversely behaving network hosts together.
Název v anglickém jazyce
Community-based anomaly detection
Popis výsledku anglicky
Network behaviour anomaly detection systems can detect zero-day attacks and work even with encrypted traffic. They maintain a model of normal behaviour and report any deviation as anomaly. Typically, a separated model for each host is generated or there is one model for the whole network. The model of normal can be built for the whole network or for each network host separately. The per host models suffer from a small amount of noisy data as the behaviour of a single user is typically not very stable. The single model for the whole network is more robust to fluctuations, but it is trying to find a normal behaviour of a group of hosts with possibly diverse behaviour. We propose a method for clustering network hosts based on their network behaviour to create groups of hosts that behave similarly. The anomaly detection models trained on such groups of network hosts are more robust to fluctuations of the behaviour of individual hosts when compared to the per host models. It is able to detect finer anomalies (e.g. stealthy data ex-filtration) that would be otherwise hidden by modelling diversely behaving network hosts together.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE International Workshop on Information Forensics and Security 2018
ISBN
—
ISSN
2157-4766
e-ISSN
2157-4766
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE Signal Processing Society
Místo vydání
New Jersey
Místo konání akce
Hong Kong
Datum konání akce
11. 12. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000461290400014