Compact Real-time Avoidance on a Humanoid Robot for Human-robot Interaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00327463" target="_blank" >RIV/68407700:21230/18:00327463 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1145/3171221.3171245" target="_blank" >http://dx.doi.org/10.1145/3171221.3171245</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3171221.3171245" target="_blank" >10.1145/3171221.3171245</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compact Real-time Avoidance on a Humanoid Robot for Human-robot Interaction
Popis výsledku v původním jazyce
With robots leaving factories and entering less controlled domains, possibly sharing the space with humans, safety is paramount and multimodal awareness of the body surface and the surrounding environment is fundamental. Taking inspiration from peripersonal space representations in humans, we present a framework on a humanoid robot that dynamically maintains such a protective safety zone, composed of the following main components: (i) a human 2D keypoints estimation pipeline employing a deep learning based algorithm, extended here into 3D using disparity; (ii) a distributed peripersonal space representation around the robot"s body parts; (iii) a reaching controller that incorporates all obstacles entering the robot"s safety zone on the fly into the task. Pilot experiments demonstrate that an effective safety margin between the robot's and the human's body parts is kept. The proposed solution is flexible and versatile since the safety zone around individual robot and human body parts can be selectively modulated---here we demonstrate stronger avoidance of the human head compared to rest of the body. Our system works in real time and is self-contained, with no external sensory equipment and use of onboard cameras only.
Název v anglickém jazyce
Compact Real-time Avoidance on a Humanoid Robot for Human-robot Interaction
Popis výsledku anglicky
With robots leaving factories and entering less controlled domains, possibly sharing the space with humans, safety is paramount and multimodal awareness of the body surface and the surrounding environment is fundamental. Taking inspiration from peripersonal space representations in humans, we present a framework on a humanoid robot that dynamically maintains such a protective safety zone, composed of the following main components: (i) a human 2D keypoints estimation pipeline employing a deep learning based algorithm, extended here into 3D using disparity; (ii) a distributed peripersonal space representation around the robot"s body parts; (iii) a reaching controller that incorporates all obstacles entering the robot"s safety zone on the fly into the task. Pilot experiments demonstrate that an effective safety margin between the robot's and the human's body parts is kept. The proposed solution is flexible and versatile since the safety zone around individual robot and human body parts can be selectively modulated---here we demonstrate stronger avoidance of the human head compared to rest of the body. Our system works in real time and is self-contained, with no external sensory equipment and use of onboard cameras only.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-15697Y" target="_blank" >GJ17-15697Y: Automatická kalibrace robotů a bezpečná fyzická interakce s člověkem inspirovaná reprezentacemi těla v mozku primátů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction
ISBN
978-1-4503-4953-6
ISSN
—
e-ISSN
2167-2148
Počet stran výsledku
9
Strana od-do
416-424
Název nakladatele
IEEE Computer Society
Místo vydání
USA
Místo konání akce
Chicago
Datum konání akce
5. 3. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—