Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Body models in humans and robots

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F22%3A00362226" target="_blank" >RIV/68407700:21230/22:00362226 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4324/9780429321542-18" target="_blank" >https://doi.org/10.4324/9780429321542-18</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4324/9780429321542-18" target="_blank" >10.4324/9780429321542-18</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Body models in humans and robots

  • Popis výsledku v původním jazyce

    Humans excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent – yet, as is so often the case, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent – human or robot – has developed. In the biological realm, evidence has been accumulated by diverse disciplines giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables control of the machine. In this chapter, we compare the character of body representations in biology with their robotic counterparts and relate that to the differences in performance that we observe. In some sense, robots have a lot in common with Ian Waterman – “the man who lost his body” – in that they rely on an explicit, veridical body model (body image taken to the extreme) and lack any implicit, multimodal representation (like the body schema) of their bodies. The core of this work is a detailed look at the somatoperceptual processing “pipeline” from inputs (tactile and proprioceptive afference, efferent commands), over “body representations” (superficial schema, postural schema, model of body size and shape), to perceptual processes like spatial localization of touch. A direct comparison with solutions to the same task in robots allows us to make important steps in converting this conceptual schematics into a computational model. As an additional aspect, we briefly look at the question of why robots do not experience body illusions. Finally, we discuss how robots can inform the biological sciences dealing with body representations and which of the features of the “body in the brain” should be transferred to robots, giving rise to more adaptive and resilient, self-calibrating machines.

  • Název v anglickém jazyce

    Body models in humans and robots

  • Popis výsledku anglicky

    Humans excel in combining information from multiple sensory modalities, controlling their complex bodies, adapting to growth, failures, or using tools. These capabilities are also highly desirable in robots. They are displayed by machines to some extent – yet, as is so often the case, the artificial creatures are lagging behind. The key foundation is an internal representation of the body that the agent – human or robot – has developed. In the biological realm, evidence has been accumulated by diverse disciplines giving rise to the concepts of body image, body schema, and others. In robotics, a model of the robot is an indispensable component that enables control of the machine. In this chapter, we compare the character of body representations in biology with their robotic counterparts and relate that to the differences in performance that we observe. In some sense, robots have a lot in common with Ian Waterman – “the man who lost his body” – in that they rely on an explicit, veridical body model (body image taken to the extreme) and lack any implicit, multimodal representation (like the body schema) of their bodies. The core of this work is a detailed look at the somatoperceptual processing “pipeline” from inputs (tactile and proprioceptive afference, efferent commands), over “body representations” (superficial schema, postural schema, model of body size and shape), to perceptual processes like spatial localization of touch. A direct comparison with solutions to the same task in robots allows us to make important steps in converting this conceptual schematics into a computational model. As an additional aspect, we briefly look at the question of why robots do not experience body illusions. Finally, we discuss how robots can inform the biological sciences dealing with body representations and which of the features of the “body in the brain” should be transferred to robots, giving rise to more adaptive and resilient, self-calibrating machines.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    50103 - Cognitive sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-24186X" target="_blank" >GX20-24186X: Vědomí celého povrchu těla pro bezpečnou a přirozenou interakci: od mozku ke kolaborativním robotům</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    The Routledge Handbook of Bodily Awareness

  • ISBN

    978-0-367-33731-5

  • Počet stran výsledku

    13

  • Strana od-do

    185-197

  • Počet stran knihy

    570

  • Název nakladatele

    ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD

  • Místo vydání

    Oxon

  • Kód UT WoS kapitoly