A Practical Representation of Time for the Human Behaviour Modelling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00328296" target="_blank" >RIV/68407700:21230/18:00328296 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.ssds.sk/casopis/archiv/2018/fss0218.pdf#page=63" target="_blank" >http://www.ssds.sk/casopis/archiv/2018/fss0218.pdf#page=63</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Practical Representation of Time for the Human Behaviour Modelling
Popis výsledku v původním jazyce
This paper proposes a representation of the time domain intended for mobile robots which operate in human-populated environments.The method aims to identify and efficiently represent patterns of human habits, which are driven by periodic processes, such as the daily cycle.The core idea is to identify periodicities in the data observed by the robot and to project the time onto a series of circles, which represent the identified periodicities.This representation ensures that Euclidean distance of periodically-occurring events is low even if these events are temporally distant.This property allows to cluster events that occur at similar times of a day or similar days of a week etc. In the use-cases presented, we demonstrate that the method allows for temporally dependent anomaly detection and it can predictthefuture presence of people across large areas.The experiments indicate that the method detection reliability and prediction accuracy outperforms state-of-the-art tools used in statistical analysis for autonomous robots.
Název v anglickém jazyce
A Practical Representation of Time for the Human Behaviour Modelling
Popis výsledku anglicky
This paper proposes a representation of the time domain intended for mobile robots which operate in human-populated environments.The method aims to identify and efficiently represent patterns of human habits, which are driven by periodic processes, such as the daily cycle.The core idea is to identify periodicities in the data observed by the robot and to project the time onto a series of circles, which represent the identified periodicities.This representation ensures that Euclidean distance of periodically-occurring events is low even if these events are temporally distant.This property allows to cluster events that occur at similar times of a day or similar days of a week etc. In the use-cases presented, we demonstrate that the method allows for temporally dependent anomaly detection and it can predictthefuture presence of people across large areas.The experiments indicate that the method detection reliability and prediction accuracy outperforms state-of-the-art tools used in statistical analysis for autonomous robots.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Prostorově temporální representace pro dlouhodobou navigaci mobilních robotů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forum Statisticum Slovacum
ISSN
1336-7420
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
15
Strana od-do
61-75
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—