An Initial Study of Targeted Personality Models in the FlipIt Game
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00329643" target="_blank" >RIV/68407700:21230/18:00329643 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-01554-1_36" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-01554-1_36</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-01554-1_36" target="_blank" >10.1007/978-3-030-01554-1_36</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Initial Study of Targeted Personality Models in the FlipIt Game
Popis výsledku v původním jazyce
Game theory typically assumes rational behavior for solution concepts such as Nash equilibrium. However, this assumption is often violated when human agents are interacting in real-world scenarios, such as cybersecurity. There are different human factors that drive human decision making, and these also vary significantly across individuals leading to substantial individual differences in behavior. Predicting these differences in behavior can help a defender to predict actions of different attacker types to provide better defender strategy tailored towards different attacker types. We conducted an initial study of this idea using a behavioral version of the FlipIt game. We show that there are identifiable differences in behavior among different groups (e.g., individuals with different Dark Triad personality scores), but our initial attempts at capturing these differences using simple known behavioral models does not lead to significantly improved defender strategies. This suggests that richer behavioral models are needed to effectively predict and target strategies in these more complex cybersecurity game.
Název v anglickém jazyce
An Initial Study of Targeted Personality Models in the FlipIt Game
Popis výsledku anglicky
Game theory typically assumes rational behavior for solution concepts such as Nash equilibrium. However, this assumption is often violated when human agents are interacting in real-world scenarios, such as cybersecurity. There are different human factors that drive human decision making, and these also vary significantly across individuals leading to substantial individual differences in behavior. Predicting these differences in behavior can help a defender to predict actions of different attacker types to provide better defender strategy tailored towards different attacker types. We conducted an initial study of this idea using a behavioral version of the FlipIt game. We show that there are identifiable differences in behavior among different groups (e.g., individuals with different Dark Triad personality scores), but our initial attempts at capturing these differences using simple known behavioral models does not lead to significantly improved defender strategies. This suggests that richer behavioral models are needed to effectively predict and target strategies in these more complex cybersecurity game.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Decision and Game Theory for Security
ISBN
978-3-030-01553-4
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
623-636
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Seattle, WS
Datum konání akce
29. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—