Simultaneous Localization of a Receiver and Mapping of Multipath Generating Geometry in Indoor Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00331671" target="_blank" >RIV/68407700:21230/18:00331671 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ion.org/publications/abstract.cfm?articleID=16043" target="_blank" >https://www.ion.org/publications/abstract.cfm?articleID=16043</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.33012/2018.16043" target="_blank" >10.33012/2018.16043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simultaneous Localization of a Receiver and Mapping of Multipath Generating Geometry in Indoor Environments
Popis výsledku v původním jazyce
This paper presents a novel algorithm that aims at combining the pre-existing and dominating applications of radio signals, namely communication, navigation and sensing of an environment into an integrated approach. Practical applications of this algorithm include navigation in GNSS-denied environments and include the generation of geometric representations of surroundings based on signals implemented in current and future mobile cellular radio communication systems. We show that the power and spectral properties of such signals allow us, in addition to estimating the position of a receiver. Especially in indoor or urban scenarios, the signal reaching the receive antenna consists of multiple paths, called multipath. Multipath reception degrades the accuracy of the positioning device as long as the receiver is based on standard methods. With Channel-SLAM we introduced a novel algorithm which uses multipath components for positioning instead of mitigating them. Channel-SLAM treats each multipath component as a line-of-sight signal from a virtual transmitter which position is unknown to the receiver. Channel-SLAM basically uses a two level approach: The first level uses a Space-Alternating Generalized Expectation-Maximization (SAGE) based Kalman filter to estimate and track the amplitude and the delay of each multipath component. Afterwards, the second level estimates simultaneously the positions of the receiver and the virtual transmitters based on the estimated parameters of the multipath components using a simultaneous localization and mapping (SLAM) approach. In this paper, we extend Channel-SLAM to exploit the geometry information of the surrounding area. Furthermore, mapping the geometry layout helps to improve the position estimation. To verify the proposed algorithm, we evaluate the algorithm based on measurements using an ultra-wideband (UWB) system.
Název v anglickém jazyce
Simultaneous Localization of a Receiver and Mapping of Multipath Generating Geometry in Indoor Environments
Popis výsledku anglicky
This paper presents a novel algorithm that aims at combining the pre-existing and dominating applications of radio signals, namely communication, navigation and sensing of an environment into an integrated approach. Practical applications of this algorithm include navigation in GNSS-denied environments and include the generation of geometric representations of surroundings based on signals implemented in current and future mobile cellular radio communication systems. We show that the power and spectral properties of such signals allow us, in addition to estimating the position of a receiver. Especially in indoor or urban scenarios, the signal reaching the receive antenna consists of multiple paths, called multipath. Multipath reception degrades the accuracy of the positioning device as long as the receiver is based on standard methods. With Channel-SLAM we introduced a novel algorithm which uses multipath components for positioning instead of mitigating them. Channel-SLAM treats each multipath component as a line-of-sight signal from a virtual transmitter which position is unknown to the receiver. Channel-SLAM basically uses a two level approach: The first level uses a Space-Alternating Generalized Expectation-Maximization (SAGE) based Kalman filter to estimate and track the amplitude and the delay of each multipath component. Afterwards, the second level estimates simultaneously the positions of the receiver and the virtual transmitters based on the estimated parameters of the multipath components using a simultaneous localization and mapping (SLAM) approach. In this paper, we extend Channel-SLAM to exploit the geometry information of the surrounding area. Furthermore, mapping the geometry layout helps to improve the position estimation. To verify the proposed algorithm, we evaluate the algorithm based on measurements using an ultra-wideband (UWB) system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018)
ISBN
9780936406107
ISSN
—
e-ISSN
—
Počet stran výsledku
18
Strana od-do
635-652
Název nakladatele
The Institute of Navigation (ION)
Místo vydání
Manassas, VA
Místo konání akce
Miami, Florida
Datum konání akce
24. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—