Stochastic Data Association for Multipath Assisted Positioning Using a Single Transmitter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340285" target="_blank" >RIV/68407700:21230/20:00340285 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2020.2977558" target="_blank" >https://doi.org/10.1109/ACCESS.2020.2977558</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2020.2977558" target="_blank" >10.1109/ACCESS.2020.2977558</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stochastic Data Association for Multipath Assisted Positioning Using a Single Transmitter
Popis výsledku v původním jazyce
This paper builds on and extends the Channel-SLAM algorithm which exploits a multipath radio channel for the position estimation of mobile receivers. Channel-SLAM treats Multipath Components (MPCs) as Line-of-sight (LoS) signals originating from Virtual Transmitters (VTs) and estimates the positions of VTs and receiver simultaneously based on Bayesian filtering. The current Channel-SLAM implementation does not involve the retracking of previous MPCs or VTs. Therefore, when the tracking of an MPC is lost and, subsequently, regained, the corresponding VT is initialized without any prior information. Incorporating a stochastic data association algorithm extends Channel-SLAM and enables the retracking of VTs even when the MPC has been lost. The proposed algorithm increases positioning reliability, decreases computation complexity, and improves the precision of Channel-SLAM. Additionally, this paper presents a novel transition model using inertial sensors for a hand-held device for moving pedestrians. The developed positioning algorithm is evaluated based on measurement data obtained in an indoor scenario using an off-the-shelf Ultra-WideBand (UWB) module. Evaluations show that accurate position estimation can be done using only one physical transmitter and without requiring any knowledge of the physical transmitter position.
Název v anglickém jazyce
Stochastic Data Association for Multipath Assisted Positioning Using a Single Transmitter
Popis výsledku anglicky
This paper builds on and extends the Channel-SLAM algorithm which exploits a multipath radio channel for the position estimation of mobile receivers. Channel-SLAM treats Multipath Components (MPCs) as Line-of-sight (LoS) signals originating from Virtual Transmitters (VTs) and estimates the positions of VTs and receiver simultaneously based on Bayesian filtering. The current Channel-SLAM implementation does not involve the retracking of previous MPCs or VTs. Therefore, when the tracking of an MPC is lost and, subsequently, regained, the corresponding VT is initialized without any prior information. Incorporating a stochastic data association algorithm extends Channel-SLAM and enables the retracking of VTs even when the MPC has been lost. The proposed algorithm increases positioning reliability, decreases computation complexity, and improves the precision of Channel-SLAM. Additionally, this paper presents a novel transition model using inertial sensors for a hand-held device for moving pedestrians. The developed positioning algorithm is evaluated based on measurement data obtained in an indoor scenario using an off-the-shelf Ultra-WideBand (UWB) module. Evaluations show that accurate position estimation can be done using only one physical transmitter and without requiring any knowledge of the physical transmitter position.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
8
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
46735-46752
Kód UT WoS článku
000524577400023
EID výsledku v databázi Scopus
2-s2.0-85082121905