Degree of Similarity of Root Trees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00322782" target="_blank" >RIV/68407700:21230/19:00322782 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-13-1056-0_57" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-13-1056-0_57</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-13-1056-0_57" target="_blank" >10.1007/978-981-13-1056-0_57</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degree of Similarity of Root Trees
Popis výsledku v původním jazyce
Adaptive User Interfaces (UI) provide better user experience as users a receive personalized presentation. These UIs heavily rely on contextual data. Context helps the application to recognize user needs and thus adjust the UI. First time user receives a generalized experience; however, as the user uses the application more often it gathers lots of contextual data, such as the history of actions. This allows to statistically classify user in a user cluster and based on that adapt the UI presentation. This paper considers methods to find a measure of similarity of graphs to support adaptive UIs. To achieve this, it considers rooted trees. It states known approaches, which could be used for calculation of this measure. It focuses on the Simhash algorithm and describes its implementation in the SimCom experimental comparative application. Its results show that Simhash can be used for comparing the rooted trees. The main aim of this paper is to show novel view on how to use graph algorithms and clustering of trees into adaptive application structure.
Název v anglickém jazyce
Degree of Similarity of Root Trees
Popis výsledku anglicky
Adaptive User Interfaces (UI) provide better user experience as users a receive personalized presentation. These UIs heavily rely on contextual data. Context helps the application to recognize user needs and thus adjust the UI. First time user receives a generalized experience; however, as the user uses the application more often it gathers lots of contextual data, such as the history of actions. This allows to statistically classify user in a user cluster and based on that adapt the UI presentation. This paper considers methods to find a measure of similarity of graphs to support adaptive UIs. To achieve this, it considers rooted trees. It states known approaches, which could be used for calculation of this measure. It focuses on the Simhash algorithm and describes its implementation in the SimCom experimental comparative application. Its results show that Simhash can be used for comparing the rooted trees. The main aim of this paper is to show novel view on how to use graph algorithms and clustering of trees into adaptive application structure.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Electrical Engineering
ISBN
9789811310553
ISSN
1876-1100
e-ISSN
—
Počet stran výsledku
11
Strana od-do
581-591
Název nakladatele
Springer Nature Singapore Pte Ltd.
Místo vydání
—
Místo konání akce
Kawloon
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—