Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00323909" target="_blank" >RIV/68407700:21230/19:00323909 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/rob.21823" target="_blank" >https://doi.org/10.1002/rob.21823</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rob.21823" target="_blank" >10.1002/rob.21823</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles
Popis výsledku v původním jazyce
The herein studied problem is motivated by practical needs of our participation in the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 in which a team of unmanned aerial vehicles (UAVs) is requested to collect objects in the given area as quickly as possible and score according to the rewards associated with the objects. The mission time is limited, and the most time-consuming operation is the collection of the objects themselves. Therefore, we address the problem to quickly identify the most valuable objects as surveillance planning with curvature-constrained trajectories. The problem is formulated as a multivehicle variant of the Dubins traveling salesman problem with neighborhoods (DTSPN). Based on the evaluation of existing approaches to the DTSPN, we propose to use unsupervised learning to find satisfiable solutions with low computational requirements. Moreover, the flexibility of unsupervised learning allows considering trajectory parametrization that better fits the motion constraints of the utilized hexacopters that are not limited by the minimal turning radius as the Dubins vehicle. We propose to use Bézier curves to exploit the maximal vehicle velocity and acceleration limits. Besides, we further generalize the proposed approach to 3D surveillance planning. We report on evaluation results of the developed algorithms and experimental verification of the planned trajectories using the real UAVs utilized in our participation in MBZIRC 2017.
Název v anglickém jazyce
Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles
Popis výsledku anglicky
The herein studied problem is motivated by practical needs of our participation in the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 in which a team of unmanned aerial vehicles (UAVs) is requested to collect objects in the given area as quickly as possible and score according to the rewards associated with the objects. The mission time is limited, and the most time-consuming operation is the collection of the objects themselves. Therefore, we address the problem to quickly identify the most valuable objects as surveillance planning with curvature-constrained trajectories. The problem is formulated as a multivehicle variant of the Dubins traveling salesman problem with neighborhoods (DTSPN). Based on the evaluation of existing approaches to the DTSPN, we propose to use unsupervised learning to find satisfiable solutions with low computational requirements. Moreover, the flexibility of unsupervised learning allows considering trajectory parametrization that better fits the motion constraints of the utilized hexacopters that are not limited by the minimal turning radius as the Dubins vehicle. We propose to use Bézier curves to exploit the maximal vehicle velocity and acceleration limits. Besides, we further generalize the proposed approach to 3D surveillance planning. We report on evaluation results of the developed algorithms and experimental verification of the planned trajectories using the real UAVs utilized in our participation in MBZIRC 2017.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Field Robotics
ISSN
1556-4959
e-ISSN
1556-4967
Svazek periodika
36
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
270-301
Kód UT WoS článku
000455132600015
EID výsledku v databázi Scopus
2-s2.0-85054572303