Computing stability limits for adaptive control laws with high-order actuator dynamics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00325160" target="_blank" >RIV/68407700:21230/19:00325160 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.automatica.2018.12.025" target="_blank" >https://doi.org/10.1016/j.automatica.2018.12.025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.automatica.2018.12.025" target="_blank" >10.1016/j.automatica.2018.12.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computing stability limits for adaptive control laws with high-order actuator dynamics
Popis výsledku v původním jazyce
A challenge in the design of adaptive control laws for uncertain dynamical systems is to achieve system stability and a prescribed level of command following performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics do not have sufficiently high bandwidth, their presence cannot be practically neglected in the design since they limit the achievable stability of adaptive control laws. In this paper, we consider the design of model reference adaptive control laws for uncertain dynamical systems in the presence of high-order actuator dynamics. Specifically, a linear matrix inequalities-based hedging approach is proposed, where this approach modifies the ideal reference model dynamics to allow for correct adaptation that is not affected by the presence of actuator dynamics. The stability of the modified reference model is then computed using linear matrix inequalities, which reveals the fundamental stability interplay between the parameters of the actuator dynamics and the allowable system uncertainties. In addition, we analyze the convergence properties of the modified reference model to the ideal reference model. The presented theoretical results are finally illustrated through a numerical example.
Název v anglickém jazyce
Computing stability limits for adaptive control laws with high-order actuator dynamics
Popis výsledku anglicky
A challenge in the design of adaptive control laws for uncertain dynamical systems is to achieve system stability and a prescribed level of command following performance in the presence of actuator dynamics. It is well-known that if the actuator dynamics do not have sufficiently high bandwidth, their presence cannot be practically neglected in the design since they limit the achievable stability of adaptive control laws. In this paper, we consider the design of model reference adaptive control laws for uncertain dynamical systems in the presence of high-order actuator dynamics. Specifically, a linear matrix inequalities-based hedging approach is proposed, where this approach modifies the ideal reference model dynamics to allow for correct adaptation that is not affected by the presence of actuator dynamics. The stability of the modified reference model is then computed using linear matrix inequalities, which reveals the fundamental stability interplay between the parameters of the actuator dynamics and the allowable system uncertainties. In addition, we analyze the convergence properties of the modified reference model to the ideal reference model. The presented theoretical results are finally illustrated through a numerical example.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Automatica
ISSN
0005-1098
e-ISSN
1873-2836
Svazek periodika
101
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
409-416
Kód UT WoS článku
000458941700045
EID výsledku v databázi Scopus
2-s2.0-85059816130