Autonomous landing on a moving vehicle with an unmanned aerial vehicle
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326172" target="_blank" >RIV/68407700:21230/19:00326172 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/rob.21858" target="_blank" >https://doi.org/10.1002/rob.21858</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rob.21858" target="_blank" >10.1002/rob.21858</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Autonomous landing on a moving vehicle with an unmanned aerial vehicle
Popis výsledku v původním jazyce
This paper addresses the perception, control, and trajectory planning for an aerial platform to identify and land on a moving car at 15 km/hr. The hexacopter unmanned aerial vehicle (UAV), equipped with onboard sensors and a computer, detects the car using a monocular camera and predicts the car future movement using a nonlinear motion model. While following the car, the UAV lands on its roof, and it attaches itself using magnetic legs. The proposed system is fully autonomous from takeoff to landing. Numerous field tests were conducted throughout the year-long development and preparations for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 competition, for which the system was designed. We propose a novel control system in which a model predictive controller is used in real time to generate a reference trajectory for the UAV, which are then tracked by the nonlinear feedback controller. This combination allows to track predictions of the car motion with minimal position error. The evaluation presents three successful autonomous landings during the MBZIRC 2017, where our system achieved the fastest landing among all competing teams.
Název v anglickém jazyce
Autonomous landing on a moving vehicle with an unmanned aerial vehicle
Popis výsledku anglicky
This paper addresses the perception, control, and trajectory planning for an aerial platform to identify and land on a moving car at 15 km/hr. The hexacopter unmanned aerial vehicle (UAV), equipped with onboard sensors and a computer, detects the car using a monocular camera and predicts the car future movement using a nonlinear motion model. While following the car, the UAV lands on its roof, and it attaches itself using magnetic legs. The proposed system is fully autonomous from takeoff to landing. Numerous field tests were conducted throughout the year-long development and preparations for the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 competition, for which the system was designed. We propose a novel control system in which a model predictive controller is used in real time to generate a reference trajectory for the UAV, which are then tracked by the nonlinear feedback controller. This combination allows to track predictions of the car motion with minimal position error. The evaluation presents three successful autonomous landings during the MBZIRC 2017, where our system achieved the fastest landing among all competing teams.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-16900Y" target="_blank" >GJ17-16900Y: Stabilizace a řízení týmů vzájemně lokalizovaných autonomních helikoptér letících oblastmi s velkým výskytem překážek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Field Robotics
ISSN
1556-4959
e-ISSN
1556-4967
Svazek periodika
36
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
874-891
Kód UT WoS článku
000475466200002
EID výsledku v databázi Scopus
2-s2.0-85059557991