Exploiting sports-betting market using machine learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326348" target="_blank" >RIV/68407700:21230/19:00326348 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijforecast.2019.01.001" target="_blank" >https://doi.org/10.1016/j.ijforecast.2019.01.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijforecast.2019.01.001" target="_blank" >10.1016/j.ijforecast.2019.01.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploiting sports-betting market using machine learning
Popis výsledku v původním jazyce
We introduce a forecasting system designed to profit from sports-betting market using machine learning. We contribute three main novel ingredients. First, previous attempts to learn models for match-outcome prediction maximized the model's predictive accuracy as the single criterion. Unlike these approaches, we also reduce the model's correlation with the bookmaker's predictions available through the published odds. We show that such an optimized model allows for better profit generation, and the approach is thus a way to `exploit' the bookmaker. The second novelty is in the application of convolutional neural networks for match outcome prediction. The convolution layer enables to leverage a vast number of player-related statistics on its input. Thirdly, we adopt elements of the modern portfolio theory to design a strategy for bet distribution according to the odds and model predictions, trading off profit expectation and variance optimally. These three ingredients combine towards a betting method yielding positive cumulative profits in experiments with NBA data from seasons 2007--2014 systematically, as opposed to alternative methods tested.
Název v anglickém jazyce
Exploiting sports-betting market using machine learning
Popis výsledku anglicky
We introduce a forecasting system designed to profit from sports-betting market using machine learning. We contribute three main novel ingredients. First, previous attempts to learn models for match-outcome prediction maximized the model's predictive accuracy as the single criterion. Unlike these approaches, we also reduce the model's correlation with the bookmaker's predictions available through the published odds. We show that such an optimized model allows for better profit generation, and the approach is thus a way to `exploit' the bookmaker. The second novelty is in the application of convolutional neural networks for match outcome prediction. The convolution layer enables to leverage a vast number of player-related statistics on its input. Thirdly, we adopt elements of the modern portfolio theory to design a strategy for bet distribution according to the odds and model predictions, trading off profit expectation and variance optimally. These three ingredients combine towards a betting method yielding positive cumulative profits in experiments with NBA data from seasons 2007--2014 systematically, as opposed to alternative methods tested.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Forecasting
ISSN
0169-2070
e-ISSN
1872-8200
Svazek periodika
35
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
783-796
Kód UT WoS článku
000469310100030
EID výsledku v databázi Scopus
2-s2.0-85061670248