Deep Learning from Spatial Relations for Soccer Pass Prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00326597" target="_blank" >RIV/68407700:21230/19:00326597 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-17274-9_14" target="_blank" >https://doi.org/10.1007/978-3-030-17274-9_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-17274-9_14" target="_blank" >10.1007/978-3-030-17274-9_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Learning from Spatial Relations for Soccer Pass Prediction
Popis výsledku v původním jazyce
We propose a convolutional architecture for learning representations over spatial relations in the game of soccer, with the goal to predict individual passes between players, as a submission to the prediction challenge organized for the 5th Workshop on Machine Learning and Data Mining for Sports Analytics. The goal of the challenge was to predict the receiver of a pass given location of the sender and all other players. From each soccer situation, we extract spatial relations between the players and a few key locations on the field, which are then hierarchically aggregated within the neural architecture designed to extract possibly complex gameplay patterns stemming from these simple relations. The use of convolutions then allows to efficiently capture the various regularities that are inherent to the game. In the experiments, we show very promising performance of the method.
Název v anglickém jazyce
Deep Learning from Spatial Relations for Soccer Pass Prediction
Popis výsledku anglicky
We propose a convolutional architecture for learning representations over spatial relations in the game of soccer, with the goal to predict individual passes between players, as a submission to the prediction challenge organized for the 5th Workshop on Machine Learning and Data Mining for Sports Analytics. The goal of the challenge was to predict the receiver of a pass given location of the sender and all other players. From each soccer situation, we extract spatial relations between the players and a few key locations on the field, which are then hierarchically aggregated within the neural architecture designed to extract possibly complex gameplay patterns stemming from these simple relations. The use of convolutions then allows to efficiently capture the various regularities that are inherent to the game. In the experiments, we show very promising performance of the method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-26999S" target="_blank" >GA17-26999S: Hluboké relační učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Machine Learning and Data Mining for Sports Analytics
ISBN
978-3-030-17273-2
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
8
Strana od-do
159-166
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Dublin
Datum konání akce
10. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—